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Abstract—Moving away from plain-text DNS communications,
users now can switch to encrypted DNS protocols for name
resolutions. DNS-over-QUIC (DoQ) employs QUIC—the latest
transport protocol—for encrypted communications between users
and their recursive DNS servers. QUIC is also poised to become
the foundation of our daily web browsing by becoming the
transport for HTTP/3, the latest version of the HTTP protocol.

Traditional TCP-based web browsing is vulnerable to website
fingerprinting (WFP) attacks that can identify the websites a user
visits. The emergence of QUIC-based DNS and HTTP protocols
raises an important question: are regular users better protected
from WFP attacks when using these new protocols?

To investigate this, we first collect and publicly release the
first benchmark dataset of network traffic corresponding to real
visits to QUIC-enabled websites while using DoQ for domain
resolution. This dataset will help advance the research on WFP
attacks and defenses. Second, we implement and evaluate the
first WFP attack targeting the combined use of DoQ and HTTP/3
protocols by users by developing two transformer models tailored
for WFP attacks. Finally, we conduct comprehensive experiments,
which reveal that these models are effective in identifying user-
visited websites, emphasizing the need for defensive measures.

I. INTRODUCTION

In today’s evolving digital landscape, protecting user privacy
is paramount as well as challenging. Among various threats
that exist, a man-in-the-middle (MitM) attacker with access
to a network middlebox, such as a router, can intercept and
read the transiting packets, thereby potentially compromising
a user’s privacy. In a website fingerprinting (WFP) attack,
the attacker aims to identify sensitive websites visited by
targeted users by eavesdropping on the underlying network
communications, consequently leading to the leak of private
information. Such leak could be exploited to discern an
individual’s sensitive information [1], e.g., political views,
health conditions, and product/banking preferences. Profiling
can subsequently lead to other threats (e.g., information sold
in the dark market), attacks, and even censorship [2].

Although much of our web browsing traffic is encrypted
due to the wide adoption of TLS, the DNS (Domain Name
System) protocol responsible for domain name resolutions, has
historically operated as a plain-text protocol. Since virtually
every online communication necessitates DNS resolution of
one or more domains, the plain-text queries and responses of
the DNS protocol serve as attack vectors for malicious actors
to launch multiple attacks on users, including WFP attacks.

In response to potential threats, standardized encrypted DNS
protocols such as DoT (DNS-over-TLS, RFC 7858) and DoH
(DNS-over-HTTPS, RFC 8484) have seen increasing adoption
across various operating systems and browsers. In particular,
the rise of the latest encrypted DNS protocol, DNS-over-QUIC

(DoQ), and the shift in web browsing towards HTTP/3 (which
is over QUIC, too) are transforming network communications.

Network protocols: As web communications move to the
next standard of HTTP/3 (H3, RFC 9114), TCP protocol is
being replaced by QUIC (RFC 9000), promising improved
latency, throughput, resilience to client mobility, security, and
privacy. In particular, QUIC eliminates TCP’s head-of-line
blocking [3], and reduces connection setup time with built-in
TLS encryption, significantly reducing the time-to-first-byte.
The recently standardized DNS-over-QUIC (DoQ) integrates
these advantages with encrypted DNS, outperforming DoT and
DoH in web performance [4]. Despite being relatively new,
DoQ is already being adopted by major DNS providers like
AdGuard and NextDNS.

While protocols like TLS ensure data confidentiality, there
has been a rise in machine learning-based WFP attacks that
threaten user privacy. Recently, these models have become
more powerful and easier to train, enhancing the capabilities
of attackers.

Advancements in AI: Al is progressing rapidly, largely
driven by the transformer model [5], which has surpassed
previous deep learning (DL) sequence models like recurrent
neural networks (RNNs) in efficiently processing long data
sequences and understanding context. Understanding how
changes in network protocols, combined with recent advance-
ments in Al, impact user vulnerability to WFP attacks is
now essential for safeguarding online privacy and developing
effective countermeasures.

Consequently, a pressing question arises:

Are regular users safe from WFP attacks when using the
latest QUIC protocol for both DNS and web browsing? Or
are they still at risk due to the advanced Al models?

Our research work addresses exactly this question (see
Threat Model in Sec. III). Different from existing works, to
the best of our knowledge, this is the first research to analyze
WEFP attacks in the context of both DoQ and HTTP/3 (that
runs on top of QUIC). Internet communications is expected to
transition to these two recent and important protocols. With
DoQ still in its nascent stage and QUIC (or HTTP/3) yet to be
enabled widely on the top 1 million websites (see Sec. I[V-B),
we deem it timely to evaluate these emerging protocols from
the perspective of WFP attacks.

Additionally, we introduce the first benchmark dataset of
DoQ and HTTP/3 traffic sourced from visits to popular QUIC-
enabled websites, along with Docker scripts, to facilitate repro-
ducible and systematic data collection (Sec. IV). As detailed



IEEE COMMUNICATIONS MAGAZINE

later, the network traffic is generated from real web browsing
sessions that (automatically) use DoQ for name resolutions
and HTTP/3 for accessing well-known websites. Our data
collection process ensured that all DNS communications were
exclusively carried over QUIC (i.e., DoQ), further aligning
with the protocol’s deployment. To enhance the quality and
comprehensiveness of the dataset, the data was collected
from multiple vantage points to better capture the network
characteristics associated with these emerging protocols.

To evaluate the utility of our dataset, we implement the
first WFP attack on DoQ and HTTP/3 traffic (Sec. V). We
develop two deep learning models based on the transformer
architecture: one uses only DoQ traffic; while the other incor-
porates packets from a browsing session consisting of DoQ for
domain resolution, and both QUIC and TCP for transporting
web traffic. The models are trained using meta-information of
encrypted packets to recognize patterns of different website
traffic. The extensive evaluations (Sec. VI) show that the
transformer models achieve over 70% recall at 90% precision,
highlighting the capability of a WFP attack to effectively
identify the websites that a user visits.

II. BACKGROUND AND RELATED WORKS
A. From TCP to QUIC

For decades, TCP has been the primary choice for web
communications, providing reliable and ordered delivery of
packets over the internet. However, the three-way handshake
and head-of-line blocking in TCP [3] at the transport layer
hurt latency. This affects applications like web communication
(HTTP). Even with multiplexing strategies at the application
layer, such as HTTP/1.1 vs HTTP/2, connections remain
inefficient. While several solutions for TCP are being proposed
to address these, e.g., TCP Fast Open, Google took steps that
led to the development of an entirely new protocol, QUIC.

QUIC is a user-space transport protocol running on top of
UDP, giving more control to applications. Several research
studies examine the pros and cons of QUIC. Yet, it has notable
advantages compared to TCP. First, with inherent support for
TLS, QUIC achieves faster connection establishment by incur-
ring fewer round-trips than TCP along with TLS. QUIC estab-
lishes a full connection in 1-RTT and connection resumption
in O-RTT. Second, QUIC multiplexes streams, which makes
a stream independent of packet losses in other streams, thus
overcoming the long-standing head-of-line blocking problem
in TCP [3]. This has implications for different applications,
and more so for web browsing, since modern web pages
have multiple components, making transporting using QUIC
an option for faster page loads. HTTP/3 (H3), the latest version
of the web browsing protocol, runs on QUIC. While QUIC is
a relatively new protocol (first deployed in 2013), it is now
used by more than 32% of all websites'.

B. Plain-text DNS to encrypted DNS protocols

Since DNS was created, its plain-text design has allowed
attackers to exploit it in different ways. For example, attackers
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can change DNS resolutions for various services and send
users to fake websites. The lack of encryption also allows
attackers to track and block users’ online activities. To solve
this, DNS-over-TLS (DoT) was introduced in 2015. It encrypts
DNS traffic between clients and resolvers. Then, DNS-over-
HTTPS (DoH) was introduced in 2017. Both use TCP and
provide the same encryption through TLS.

However, in 2022, the IETF standardized DNS-over-QUIC
(DoQ, RFC 9250) to optimize privacy by minimizing the
latency. With the implementation of DoQ, connections are
established faster than DoT/DoH. Moreover, QUIC provides
additional encryption options, making DoQ competitive with
DoH in terms of speed, packet loss rates, and encryption capa-
bilities. The use of DoQ has been observed to load web pages
10% faster in comparison to DoH [4]. Interestingly, it was also
observed that, as the number of domain resolutions required
increases for a complex website, the page load time becomes
only around 2% slower with DoQ than with the traditional
plain-text DNS (over UDP) [4]. This marginal performance
impact is attributed to the amortization of encryption costs
across multiple domain resolutions.

C. Website fingerprinting over the years

Website fingerprinting [1], [6] has been studied extensively
over the past two decades. Most research considers TCP as the
underlying communication for both encrypted HTTP and DNS
communication. While in certain settings, side channels, such
as plain-text DNS, and SNI in TLS, might leak information
regarding the websites being visited, the common assumption
in WFP studies is that no such information is available.
The major focus of the existing WFP works has been on
i) defining network-level features for training the WFP models
and ii) adapting the latest machine learning models to achieve
high accuracy.

Features: Since the traffic is encrypted, the features used are
meta-information from the packet headers (and not payloads).
These features fall into two types:

o Raw per-packet features: These are extracted directly
from the packet headers, such as packet size, inter-arrival
time, and direction [1], [7], [8].

o Engineered (or hand-crafted) features: These features are
created by grouping packets based on certain rules. For
example, a burst of packets with a short inter-arrival
time is grouped together. Features such as total size,
the number/ratio of incoming and outgoing packets, and
statistical measures of inter-arrival times (e.g., mean and
standard deviation) are then computed and used.

Models: Several research works study the effectiveness
of conventional models, e.g., Naive Bayes classifier, SVM
(support vector machine), and Random Forest, for building the
WFP attacker system. The advancement in neural networks
led to the development of deep learning models that can
learn more from not only large datasets but also from high-
dimensional features. In the WFP domain, this resulted in
proposals that leveraged AutoEncoders (AE), CNN, LSTM
and a combination of multiple models [6]. AEs, for example,
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Fig. 1. Threat model of WFP attacks.

are useful in encoding features from network packets, which
can then be fed to a state-of-the-art DL classifier [6].

QUIC website fingerprinting: As websites began using
QUIC, recent research analyzes traffic to see if QUIC sites
are vulnerable to WFP attacks. In [9], the authors show that
a model trained on TCP traffic struggles to identify QUIC
websites. However, using several engineered features, the
model can identify QUIC traffic for website fingerprinting.

Encrypted DNS: The standardization of encrypted DNS
protocols led to new studies on traffic analysis for security
and privacy [10]. For example, with DoH, since it uses the
same port as HTTPS (443), DNS and web traffic cannot be
distinguished by applying rules on network traffic. However,
in [11], we showed that machine learning models, using raw
features like packet size and inter-arrival time, can identify
DoH traffic, making DoH fingerprinting attacks possible.

To the best of our knowledge, no existing research work
studies DoQ in the context of fingerprinting websites that
support QUIC. Below, after defining the threat model, we
define the problem we are addressing in this work.

III. THREAT MODEL

Our threat model, depicted in Fig. 1, follows the traditional
approach in WFP attacks. We consider a network attacker with
the ability to passively monitor the network traffic communi-
cations of a target victim. Following common assumptions in
WEFP studies [12], this attacker may control an intermediate
network device, such as a router, as seen in authoritarian
regimes and malicious ISPs that monitor their citizens and
customers [2]. Alternatively, they could also monitor users
through a compromised router or WiFi hotspot. With this
eavesdropping capability, the attacker intercepts and logs
packets in transit between users and the remote services they
access (including websites and DNS servers). In this work,
we assume that the communication protocols utilized by users
for browsing, as well as by attackers for fingerprinting, are
(i) DoQ for DNS resolution and (ii) QUIC for web browsing.
Note that websites supporting QUIC might also generate TCP
flows, for instance, to deliver part of the contents from other
resources (e.g., content distribution networks) that do not yet
support QUIC.

To execute the attack, the adversary employs a supervised
machine learning model. The dataset used for model training is
generated and collected by the adversary beforehand. Specif-
ically, the adversary visits a set of sensitive websites (i.e.,
monitored websites) of interest and captures the corresponding
packet traces. Additionally, the adversary collects network

traces of websites that are not sensitive (i.e., unmonitored
websites). This enables the attacker to train a model to
differentiate between monitored and unmonitored websites in
a realistic scenario; refer to Sec. VI-B for a description of this
open world setting.

A. Problem Definition

Taking the attacker’s role, we are interested in identifying
the QUIC-supported websites that a user visits. For this, we
formulate the problem in two scenarios:

o SP°Q: Can an attacker identify the websites visited by a
user solely relying on DoQ traffic? To answer this ques-
tion, we focus on the DoQ traffic related to a website’s
domain resolutions and its resources. We train a model
to classify and identify the monitored websites. Observe
that, domain resolutions make up only a small part of the
traffic when visiting a website; most of the traffic is the
website’s content. This limited data makes the problem
challenging. However, it also helps us understand the
privacy risks caused by DoQ alone.

o SPOQHH3: We train a website classification model using
the first £ network packets generated during visiting a
QUIC-supported website. Importantly, this sequence of
packets includes DoQ packets besides the web traffic,
and, as mentioned above, the latter not only consists of
QUIC but also TCP packets [9].

IV. A NEW DATASET OF DOQ AND QUIC TRAFFIC

Given that DoQ and QUIC are relatively new protocols,
there is no readily available datasets for our work. We describe
the process of collecting network traffic for DoQ and QUIC.

A. Connecting to Website via QUIC

Since QUIC is a young protocol, not all websites have
implemented support for it yet. As of today, typically, if a
web server supports QUIC, it conveys this information in the
initial HTTP HEADERS reply sent back to the browser. This
includes an alternative-service (ALT-SVC) field containing
an Application-Layer Protocol Negotiation (ALPN) identifier.
ALPN describes alternative HTTP versions available (e.g.,
http/1.1, h2, h3). If QUIC is supported, this ALPN
identifier is set to h3. Upon detecting h3 in the ALPN
identifier, the browser establishes a fresh connection to the
web server via QUIC.

Accordingly, an important point to note is that connection
to a QUIC-enabled website generally involves both TCP and
QUIC traffic. Furthermore, due to various other factors, e.g.,
resources hosted on third-party websites that may not support
QUIC, even more TCP traffic may be generated.

B. Identifying QUIC-enabled websites

For data collection, we select Tranco’s list of the top
1 million domains (https://tranco-list.eu/), often used for re-
search purposes. As such lists do not provide any information
regarding whether a website supports QUIC, our initial task
is to create a list of top domains that are QUIC-enabled. For
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this purpose, we leverage cURL and establish connections to
each domain in Tranco’s list, restricting the requests to HTTP
HEAD only (instead of the whole index page), minimizing
both client and server-generated traffic. The ALT-SVC field
in the received HTTP HEADERS surely indicates whether
the website supports QUIC. Consequently, we identified over
174,000 websites (out of the top 1 million from Tranco’s list)
that support QUIC.

The list we generate does not mandate that the servers con-
tacted during the actual data collection phase will consistently
support QUIC. This could be due to multiple factors, e.g.,
backend server configurations. Therefore, we carry out one
more processing step. We revisit the aforementioned 174,000+
websites ten consecutive times. If QUIC support is found in
all ten visits, we classify the website as QUIC-enabled.

C. Enabling DoQ for DNS resolutions

Contemporary web browsers (e.g., Firefox, Chrome, Safari)
offer native support for DNS-over-HTTPS (DoH). However,
if other forms of DNS resolution are needed (be it plain-
text or encrypted), the browser needs to delegate to the
underlying OS. For DoQ, we have only the second option, i.e.,
to configure the OS to use DoQ instead of the default plain-
text DNS. For this purpose, we utilize AdGuard’s DoQ-proxy,
which intercepts plain-text DNS communications initiated by
applications on the host system (e.g., the web browser) and
sends them through encrypted QUIC transport channels to
remote DoQ resolvers. This exclusive use of DoQ makes the
attack easier to execute—both in terms of capturing packets
and being budget-friendly regarding packet processing and
storage costs—thereby making the attack more realistic to exe-
cute. Currently, the number of public DNS resolvers providing
DoQ access is limited. Consequently, to fully comply with the
proxy application, we rely on AdGuard’s DoQ resolver, the
first public DNS resolver to support the DoQ protocol.

D. Data collection process

1) Vantage points: We utilized remote clusters provided
by CloudLab (https://cloudlab.us/), a well-established research
infrastructure. Data was collected from four distinct vantage
points (consisting of x86 servers running stock Ubuntu 22.04),
namely, Utah, Massachusetts, Clemson, and Wisconsin, span-
ning across days to enhance the generalization of the models
developed and to minimize encountering CAPTCHA pages.

2) Implementation: We developed a Docker container bun-
dled with several Python and BASH scripts, facilitating the
automation of the entire process. Within this container, we
use the Selenium API to direct a Google Chrome browser to
visit the QUIC-enabled domains identified. Each website visit
is assigned a predefined timeout for deterministic completion;
those that fail to load within the timeout are removed from
the dataset.

For each scenario (cf. Sec. III-A), the containers visit
each domain a specified number of times (see details below)
to ensure a consistent amount of traces per domain for
the training process. Concurrently, a separate container runs
the DoQ-proxy for domain name resolution (cf. Sec. IV-C).

tcpdump runs in the background to capture all packets
traversing through the website visiting and the DoQ-proxy
container’s networking interfaces. For each website visit, we
restart the DoQ-proxy connection and the browser to flush
the caches (i.e., DNS caches and browser cache). The stored
packet traces are subsequently processed using tshark to
extract the important features and store them in CSV format
for further data processing.

By executing these processes within distinct containers, we
ensure adequate isolation to capture only the traffic relevant to
web browsing. Accordingly, the network traffic corresponding
to the top 500 QUIC-enabled websites, each visited 1,280
times, forms the dataset of the monitored websites. For the
unmonitored websites, the network traffic data are due to visits
(4 times each) to the top 74,700 QUIC-enabled websites from
the range [500, 174,000+] ordered as per Tranco’s ranking.

BENCHMARK DATASET.

o The dataset comprises network traffic generated from
real browsing sessions using the emerging QUIC trans-
port protocol, both for DNS and HTTP/3.

o Traffic corresponding to more than 75,000 websites is
collected for closed and open world settings.

o Data was collected from multiple vantage points.

e To support reproducibility and future research,
a containerized traffic collector and the dataset
are released at https://github.com/cslev/DoQ_QUIC_
webtraffic_analysis.

V. MODELING WEB TRAFFIC

The transformer model, known for its effectiveness in
capturing long-range dependencies in sequence data with its
self-attention mechanism [5], offers promise for website fin-
gerprinting tasks. By treating network packets as words/tokens
and utilizing self-attention mechanisms, it can effectively learn
intricate patterns in packet sequences. Transformer models
can be categorized into three main architectures: encoder-only,
encoder-decoder, and decoder-only. For our work, we use the
encoder-only architecture (see Fig. 2), which is commonly em-
ployed for classification tasks, including traffic modeling [13].

The encoder-only model we use consists of three core com-
ponents: input embedding, encoder, and classification head.
The input embedding layer maps the raw input features rep-
resenting network traffic into high-dimensional vector repre-
sentations. These embedded representations are then combined
with positional encodings and a special CLS token. The en-
coder stack, which forms the core of the model, applies multi-
headed self-attention mechanisms across the input packet
sequence. The multi-head self-attention allows the model to
weigh (i.e., learn the importance) of different packets and their
features as needed; e.g., whether the first/last few DoQ packets
are more important or not will be learned by the model heads
independently. This allows the model to capture long-range
dependencies and extract relevant features. The whole packet
sequence is then represented concisely in the fixed-size CLS
token. The classification head takes the encoded representation
in the CLS token and passes it through dense layers, ultimately
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Fig. 2. Transformer model architecture for website fingerprinting

outputting the probability distribution over the target classes.
The predicted class is then determined by selecting the class
with the highest probability score.

Based on the transformer architecture, we develop two
models for the two scenarios we are interested in—SP°Q and
SPoQ+H3 First, we explain how network traffic is represented.

A. Input traffic representation

Each visit to a website results in packet communications on
the wire. We sort the packets of a website visit as per their
timestamps and thereby obtain a time-ordered sequence of
packets in both directions. Recall, the traffic generated during
a website visit are DoQ packets for domain resolutions, and
QUIC and TCP packets for browsing contents (cf. Sec. IV-A).

As we utilize sequence-based transformer models for WFP,
a data point for modeling is a sequence of the first k packets
representing a single trace of a website visit, where each packet
is represented by a fixed number of features (defined below).

B. Scenario SPC: Modeling DoQ Traffic

We first describe how we build a WFP model, 7P, for
the scenario SP°Q (cf. Sec. II-A).

Features play a crucial role in modeling data and influence
model performance. When traffic is encrypted, as is the
case with DoQ traffic, we are limited to extracting meta-
information. For each packet, we extract direction (i.e., in-
coming/outgoing), inter-arrival time (IAT), and packet size (in
bytes). Note that IAT is the time between the current packet
and the previous packet (irrespective of the direction). Thus,
we represent each packet with a concise 3-element vector.

As mentioned above, a data point for modeling is a sequence
of k packets of a trace, where in the case of DoQ, each
packet is represented by a 3-dimensional vector. For traces
with fewer than k packets, the remaining part of the input is
padded with a special vector (e.g., [—255, —255, —255] to fill
the sequence length to k, to inform the model of non-existent
packets in the sequence. Conversely, for traces having more
than k packets, the excess packets are truncated. Following
this pre-processing step, normalization is applied to refine the
quality of the trace representation. The parameter k is crucial:
if set too low, the model may not capture enough packets and
fail to learn effective fingerprinting. If k is too high, excessive
padding can occur, which, based on our observations, results
in poorer performance and longer computational times.

Hence, the value of k£ should be such that it captures most
of the DoQ packets in a trace in SP°Q, We observed that 95%
of the DoQ traces in our dataset have a DoQ packet count of
less than 150. If we set & = 200, then we capture all DoQ

packets in almost all traces. In light of this observation, we
pragmatically set our maximum sequence length £ to 200 for
effective DoQ traffic representation and model training.

We use TP to refer to the model trained on the packet
sequences from DoQ traffic generated during website visits.

C. Scenario SP°*: Modeling DoQ+QUIC Traffic

With this scenario, we analyze if adding QUIC web traffic
would improve performance of SP°Q. Therefore, in addition to
the features defined for DoQ traffic, we use two more features.
Namely, we record if the transport protocol is QUIC or TCP
along with another boolean value indicating if a packet is part
of a DoQ (domain resolution) or HTTP (browsing) traffic.
Using these five features, we train a transformer model on
packet sequences from traffic related to website visits and refer
to the model as 7P0Q+H3,

VI. PERFORMANCE EVALUATIONS

We compare the two transformer models, TP and
TPoH3 - corresponding to the two scenarios, SP°? and
SPoQ+H3 " respectively. We compare these transformer models
with the previous best-known sequence model, LSTM (Long
Short-Term Memory) that has been proposed in the literature
for website fingerprinting [14]. We apply the LSTM model for
the scenario SP°Q*H3  giving it packet sequences with the same
features as for 7P°%H3 (cf. Sec. V-C). The LSTM architecture
consists of four hidden layers, followed by a dense layer and
a softmax for classification. We evaluate the WFP models
in both closed world and open world settings.

A. Evaluations in Closed World

In the closed world, the attacker is assumed to know all
the websites the victim visits, called the monitored websites.
The attacker’s goal is to identify which monitored website
is visited. This is a multi-class classification problem, where
each website visit must be classified into one of the monitored
websites. As a result, all three website fingerprinting models
are trained as multi-class classifiers. For example, in an ex-
periment with 500 websites, the models are trained to classify
a website visit into one of these 500 websites.

To evaluate the models, we utilize the complete dataset
consisting of 1280 traces per monitored website (500 x 1,280).
We adopt an 80:20 train-test split, with 1024 traces per website
used for training and the remaining 256 traces used for testing
Recall that the training and testing traces come from all four
locations. (cf. Sec. IV-D1).

1) Metrics: WEFP attack in the closed world is evaluated
using accuracy, defined as the ratio of the correctly identified
monitored websites to the total number of monitored websites.

2) Hyper-parameter tuning: We first carry out experiments
to set the hyper-parameters for the transformer models. We
focus on the three important parameters: embedding size,
number of attention heads, and the number of encoders. For
this purpose, we choose 7P°H3 ag the model, as it is trained
with more features and data (DoQ, QUIC, and TCP flows).
The number of websites ranges from 100 to 500.
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Fig. 3. Performance of the models in the closed and open world settings.

We first set the number of encoders to one and varied the
embedding size and the number of heads. Note that embedding
size increases along with the number of attention heads since
the number of attention heads must be a factor in embedding
size in the model architecture. By increasing the values of
embedding size and attention heads (as tuples), we found that
embedding size of 32 and 16 attention heads gives the highest
accuracy; hence we select and fix these values. Next, we vary
the number of encoders from one to four. We observed that
the performance does not improve beyond two encoders, and
therefore we set the number of encoders to two for our models.
We note that the transformer models are relatively small with
less than 750K trainable parameters.

3) Results: We evaluate the accuracy of the three models,
namely LSTM, 7P°Q and 7P°Q*H3  in the closed world.
Fig. 3a plots the results. All three models achieve high
accuracy in this setting. Both transformer models show higher
accuracy than the baseline LSTM model. Between the two
transformer models, it is interesting to observe that 7P°2 out-
performs 7P°Q*3 " although the difference is not significant.
Yet, to understand better, we analyze the traces in detail.

Recall our discussion on sequence length (k) selection
in Sec. V-B—almost all DoQ traces in SP°Q scenario (i.e.,
DoQ-only traces) have less than 200 packets. Therefore,
k = 200 includes most DoQ packets in SP°Q scenario.
But in SPoR*H3 gcenario, there are HTTP packets besides
the DoQ packets. Therefore, we extracted the index of the
last DoQ packet in website traces in the SP°QH3 scenario
where DoQ packets are shuffled with HTTP packets (e.g.,
when multiple domains are being resolved). We found that
the index of the last DoQ packet in the traces, on average, is
around 6000; hence the same sequence length would (ideally)
be required. Such extremely long sequences create multiple
challenges, importantly, high computational time for training,
large storage space, and a high cost of buffering packets in
a network middlebox. Nevertheless, we evaluated the classi-
fication performance of 7P°%*H3 model for higher sequence
lengths from 500 to 1000 and noticed only marginal gains
(< 1%) in accuracy. This indicates that when DoQ is mixed
with other traffic, increasing DoQ packets (beyond a limit) has
diminishing returns. Therefore, for the rest of the experiments,
we maintain the same sequence length, i.e., kK = 200.

90% precision is emphasized for easy comparison. values. Note, X-axis is in log scale.

B. Evaluations in Open World

1) Website fingerprinting models: We now consider the
open world setting, wherein the attacker maintains a set of
monitored websites, and any website not on this list is consid-
ered to be unmonitored. For our experiments here, we set the
number of monitored websites to the top-100 QUIC-enabled
domains, each with 360 traces (i.e., 36,000 in total). We train
the models with 101 classes, where the additional class is
for the unmonitored traces. The unmonitored class consists
of the top 45,000 websites (after the top-100) with 4 traces
per website, totaling 180,000 traces. Note, for the unmonitored
websites, there is no overlap between training and testing sets;
i.e., a website seen in the training set is not present in the
testing set. Also, the traces are randomly picked from different
locations for both training and testing (cf. Sec. IV-D1). The
train-test partition for monitored classes is 75:25, and for the
unmonitored class is 1:1. This leaves 27,000 (9000) monitored
traces and 90,000 (90,000) unmonitored traces for training
(testing); thus, we have a high 1:10 ratio between monitored
to unmonitored traces for testing.

Evaluation strategy: During inference, given a trace to clas-
sify, the model gives the probability of it being of any of these
101 classes. For evaluations, we follow a common approach;
we consider this prediction probability to be the confidence
the model has in its prediction. Therefore, if the maximum
probability given by the classifier is less than a pre-defined
confidence threshold, we reclassify it to the unmonitored class.
This aims for a lower false positive rate (FPR). Since the
number of unmonitored websites can be one or more orders of
magnitude higher than the monitored websites, even an FPR of
10~ is considered high for practical attack utility. Therefore,
we focus on evaluating the models at FPRs of 10~2 and lower.
The attacker can select the confidence threshold such that the
classifier produces a low FPR even if it misses identifying
some monitored websites (false negatives).

2) Metrics: To evaluate the open world scenario, we use
the traditional metrics of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN), wherefrom
Precision, Recall (i.e., TPR), and FPR are derived.

3) Results: Fig. 3b plots the precision-recall curves for the
three models in the open world experiments. The transformer
models clearly outperform the LSTM model. At a high 90%
precision, the recall achieved is less than 10% with the LSTM
model for the SP°UM3 gcenario. Whereas, at the same 90%
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precision, the 7P°Q*H3 model achieves a significantly high
recall of ~ 80%. Although the 7P°? model edged out 7P°QH3
in the closed world experiments, in the more challenging open
world experiments, TDoRH3 5chieves 10% more recall at 90%
precision in comparison to 7P°Q, with the latter achieving
(still) a high 70% recall. Note that, by modeling only DoQ
traffic, 7°° still has 60% higher recall than the LSTM model,
although the LSTM model utilizes both DoQ and HTTP traffic.

Fig. 3c plots TPR (recall) at low FPR values. We have
similar observations as before. At 102 FPR, the LSTM model
achieves only ~ 25% TPR, whereas the transformer models
achieve much higher TPR values. Specifically, 7P°? has a
TPR of ~ 73%, whereas the TPR of 7P°Q*H3 is greater than
80% at 10~2 FPR. At an even lower FPR of 103, the TPR
of LSTM drops to a very low ~ 10%, whereas the 7P0Q+H3
model is still able to identify 50% of the monitored websites.

TAKEAWAYS.

i) Just by modeling DoQ traffic, an attacker with a modest
traffic capturing budget (in terms of processing and storing
network packets) is able to identify 70% of monitored
websites (recall) at 90% precision.

ii) Modeling both DoQ and web traffic, an attacker achieves
an even higher recall of =~ 80% at 90% precision.

iii) Transformer models are superior to the LSTM model in
fingerprinting QUIC-enabled website traffic.

VII. CONCLUSIONS

We conducted the first comprehensive study exposing
the vulnerability of the latest protocols—DoQ for DNS
resolutions and QUIC for web—against WFP attacks
targeting user privacy. This work opens up further research
directions, e.g., would a more realistic scenario involving
multi-tab browsing pose challenges for WFP? As packet
padding is known to be ineffective [15], a future direction is
to explore application-level defenses.
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