
Optimizing IGP Link Costs for Improving
IP-level Resilience

Gábor Rétvári, Levente Csikor, János Tapolcai
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Email: {retvari, csikor, tapolcai}@tmit.bme.hu

Gábor Enyedi, András Császár
TrafficLab,

Ericsson Research
Email: {gabor.sandor.enyedi,andras.csaszar}@ericsson.com

Abstract—Recently, major vendors have introduced new router
platforms to the market that support fast IP-level failure pro-
tection out of the box. The implementations are based on the
IP Fast ReRoute–Loop Free Alternates (LFA) standard. LFA
is simple, unobtrusive, and easily deployable. This simplicity,
however, comes at a severe price, in that LFA usually cannot
protect all possible failure scenarios. In this paper, we give new
graph theoretical tools for analyzing LFA failure case coverage
and we seek ways for improvement. In particular, we investigate
how to optimize IGP link costs to maximize the number of
protected failure scenarios, we show that this problem is NP-
complete even in a very restricted formulation, and we give exact
and approximate algorithms to solve it. Our simulation studies
show that a deliberate selection of IGP costs can bring many
networks close to complete LFA-based protection.

I. INTRODUCTION

The IP protocol suite has come a long way to become
a viable bearing platform for commercial telecom services.
However, there still exist missing components that make
it difficult to sustain the transmission quality required by
multimedia applications, like VoIP, IPTV, online gaming, etc.,
in a pure IP or MPLS/LDP environment. Perhaps the most
prominent issue is the slow reaction to device and link
failures. Interior Gateway Protocols (IGPs), like OSPF or
IS-IS, adopt a restoration-based resilience approach, using a
global flooding of failure information and a lengthy network-
wide re-convergence process. In order to achieve a sub-50 ms
convergence time essential for most multimedia applications,
one needs to go beyond conventional restoration and invoke a
protection-based, proactive, local recovery method, called IP
Fast ReRoute (IPFRR, [1]). In IPFRR, routers precompute
alternate next-hops and traffic is instantly switched to these
secondary next-hops should the primary next-hop become
unavailable. This ensures that traffic flows without interruption
until the IGP converges in the background.

Unfortunately, combining IP’s destination-based forwarding
with protection is difficult. Therefore, many IPFRR proposals
require alterations to destination-based forwarding itself [2],
or introduce some forms of in-band or out-of-band signaling
mechanism for failure notification [3]–[5], or use tunnels to
route around the failed component [6]–[8]. Deploying these

G.R. was supported by the János Bolyai Fellowship of the Hungarian
Academy of Sciences. J.T. was supported by the Magyary Zoltán program.

IPFRR mechanisms, therefore, would either demand non-
trivial modifications to the essential IP infrastructure or impose
considerable management burden on network operations [9]
(or both), making network device vendors reluctant to imple-
ment them and discouraging operators from deploying IPFRR.

To our days, only a single IPFRR specification has found
its way into commercial IP routers: Loop Free Alternates
(LFA, [10]). LFA is as simple as it can get: traffic impacted
by a failure is passed on to an alternate next-hop (called
a Loop Free Alternate) that still has an intact path to the
destination. LFA can be implemented with straightforward
software upgrades, and so it can be deployed incrementally.
Simplicity and deployability, however, comes at a significant
price: depending on the network topology and IGP link costs,
very often not all routers have LFAs to all destinations, making
it impossible to repair certain failure scenarios rapidly.

Consequently, many operators are hesitating to enable LFA,
trying to measure the expected benefits against the additional
costs. In this paper, we seek ways to assist in making this im-
portant decision. In the first part, we give new graph theoretical
tools for analyzing LFA failure case coverage in operational
networks. Similar protectability analyses are already available
for some non-standardized IPFRR mechanisms: [11] considers
the O2 method and [12] discusses a centralized destination-
based routing scheme. For LFA, only simulation-based reports
have been available this far [13]–[16], but a mathematical
apparatus for LFA coverage analysis is still missing. We took
the initial steps towards this goal in [17], and in this paper we
bring that work further.

Initial deployments confirmed that in many operational
networks LFA indeed does not guarantee protection for all
failure scenarios. There are various ways to overcome this.
One is to alter the network topology (which problem we
treated in [17]) and the other we focus on in this paper
is altering link costs. In particular, we ask how a network
operator can adjust IGP link costs in order to maximize LFA-
based resilience. While improving IP resilience is a recurring
theme in the literature (see [18] for deflection routing, [11] for
O2, or [12] for a review), for the specific case of LFA only the
joint optimization of network performance and resilience has
been investigated previously [19], [20]. Thus, at the moment
very little understanding is available as to how much LFA-
based IP Fast ReRoute is suitable to protect an IP network

and to what extent this can be improved by optimizing link
costs.

After reviewing the related literature in Section II and
introducing the notations and the model in Section III, we
first discuss LFA failure coverage analysis (see Section IV)
and then, in Section V, we turn to discuss the LFA cost
optimization problem. We show that even a very minimalistic
formulation of the problem is already NP-complete, and we
give exact and heuristic algorithms to solve it. In Section VI,
we evaluate the proposed algorithms numerically and finally
we conclude our work with Section VII.

II. RELATED WORKS

The IP Fast ReRoute framework was initiated by the Internet
Engineering Task Force in [1], and the Loop Free Alternates
standard, as the basic specification for IPFRR, was subse-
quently documented in [10]. IPFRR is not only targeted into
pure IP networks, but forwarding mechanisms that also rely
on the IP control plane for routing information could also
benefit from it. Most notable amongst these is MultiProtocol
Label Switching using the Label Distribution Protocol for label
management.

It was from the very beginning made clear by the IETF
that LFA does not guarantee fast protection for all possible
failure scenarios in all network topologies. This was later
confirmed by extensive simulation studies, which indicated
that, depending on the topology and link cost settings, LFA
can usually protect only about 50-80% of the possible link
failure scenarios, and the level of node protection is even
worse [13]–[15], [21]. These LFA coverage analyses are all
quantitative studies, based on calculating the LFA coverage for
various real-life network topologies. Perhaps the most detailed
amongst these is [16], which inspects the applicability of LFA
in common access network topologies. So far, no qualitative
analyses have been available in the literature, which would
help uncover the graph theoretical ingredients needed for good
LFA coverage. We initiated the work in that direction in [17],
and in this paper we refine our earlier results significantly.
Possibly the closest to ours is the study in [12], where the
authors perform a qualitative protectability analysis for a fast
resilience scheme they call IP protection routing. Protection
routing is appealing for such an analysis as it is theoretically
much easier to approach than LFA, however, in practice
it is somewhat less attractive as implementing it requires
centralized control over the routing tables.

Since the appearance of the original LFA draft, many IPFRR
proposals have surfaced. Implicit in these proposals is the
recognition that in order to protect all failure scenarios one
either needs to go beyond standard IP forwarding and/or apply
some forms of explicit failure notification mechanism. The
reason for this is that a router must give special treatment to
packets traveling on a detour around a failure, or otherwise
forwarding loops will arise in certain failure scenarios.

Most IPFRR proposals choose the former option and in-
tervene at the level of IP packet forwarding. Failure In-
sensitive Routing [2], [22], [23] differentiates packets based

on the incoming interface they arrive through, letting the
router to guess the failure’s location from the direction of the
received packets and exploit this information in the course
of packet forwarding. Multiple Routing Configurations [5]
call to achieve the same goal with explicit packet marking,
while other proposals, like Not-via Addresses, use tunnels
to this end [6]–[9]. Unfortunately, the former solution would
allocate invaluable bits in the IP header, while the latter
might cause painful packet fragmentation and time-consuming
reassembly at the tunnel endpoint if the additional IP header
does not fit into the MTU. Deflection routing for fast rerouting
purposes is proposed in [18], while O2 routing, a resilient
multi-path data forwarding method, is specified in [24]. Both
require non-standard IP forwarding functionality, unavailable
in commercial routers at the moment.

A different approach is to use explicit signaling to notify
routers about failures [3], [25]. This avoids having to modify
standard IP forwarding at the price of a establishing a separate
signaling mechanism just for IPFRR. Proposals also exist to
combine different IPFRR mechanisms to achieve full protec-
tion [21]. Good overviews on IPFRR are [13] and [15].

So far, only one IPFRR method has found its way into
commercial routers, and hence into operational IP networks:
LFA. Due to its appealing simplicity, operators can deploy
LFA incrementally without any particular staff training, and
no major alterations to installed IP hardware and software.
Therefore, at least two major vendors are already providing
LFA out of the box [26], [27], and other vendors are expected
to follow suit.

Finding methods to design or optimize networks in an
attempt to improve fast resiliency has been an actively re-
searched topic lately. In the recent literature, [18] seems to be
the first reference that, besides motivating the need for fast IP
resilience with detailed failure case analysis in an operational
backbone, proposes a method to improve the robustness of
the network against such failures. Theory and algorithms for
topology optimization for O2 are presented in [11], and a
generic approach for protection routing is given in [12]. Apart
from our study in [17], the only attempts at LFA-oriented
network optimization seem to be [19] and (partly) [20].

A common theme shared by most approaches is that (with
the exception of [11] and [17]) each one addresses the joint
optimization of network resilience and routing performance
simultaneously. The former aims at better protection against
failures, while the latter is called to minimize congestion and
distribute load evenly in the network with respect to some
known, measured or predicted, traffic matrix [28]. A good
example of this approach is [19], where the authors formu-
late the joint LFA cost optimization and traffic engineering
problem as a constraint-programming task and feed it into
a generic solver. We believe that this approach has several
drawbacks. First, good traffic matrices are difficult to come by,
and this is even more so today as traffic is becoming extremely
dynamic and unpredictable. Many modern traffic engineering
methods, therefore, completely eliminate the dependence on
traffic matrices [29]. Second, there may be operational goals

more important than mere load balancing [30], [31], and most
existing proposals leave these out of consideration. But most
importantly, solving the joint problem leaves the particularities
of the individual subproblems, their computational complexity
and algorithmic aspects, in obscurity. For instance, the authors
in [19] claim that the joint problem is NP-complete because
OSPF traffic engineering in itself is already NP-complete [32],
without ever getting to know anything about the computational
complexity of LFA cost optimization alone.

We think that our approach, a rigorous separation of per-
formance maximization and LFA cost optimization, allows
a deeper understanding of the problem. It lets us to treat
LFA cost optimization as a standalone optimization problem,
determine its complexity and give efficient algorithms. This
then leads to good insight into the inherent limitations of LFA-
based IP Fast ReRoute and the extent to which optimizing
costs just for the purpose of IPFRR can improve the resilience
in IP networks. We believe that only after understanding the
fundamental trade-offs involved in LFA-based IPFRR should
we take the next step and address operational issues, like traffic
engineering, in network optimization.

III. MODEL AND PROBLEM FORMULATION

We model the network with a connected, undirected graph
G(V,E), the set of nodes is denoted by V (|V | = n) and set of
edges by E (|E| = m). Let Ni denote the set of neighbors of
some node i ∈ V . For simplicity, we assume that the network
consists of point-to-point links only and contains no broadcast
LANs and Shared Risk Link Groups (SRLGs). IGP link costs
are represented by an edge cost function c : E 7→ Z+. The cost
of an edge (i, j) is denoted by c(i, j). The model assumes that
costs are symmetric. We presume that G(V,E) and the cost
function c are readily available to the network nodes through
the IGP, using which all routers can compute the shortest path
distance between any two routers in the network. Denote the
distance from node i to node j with dist(i, j).

Fig. 1 shows a sample network, with costs indicated near the
edges and shortest paths towards node f marked by arrows.
For instance, node b’s next-hop along the shortest path to node
f is node e. Should the link from b to its next-hop e become
unavailable, b can safely switch to an alternate next-hop, in
this case node d, even without explicitly notifying it about the
failure, as d will never send packets destined to f through
b so no loop can arise. We say that for some source s and
destination d, a neighbor n of s that is not the next-hop of s
towards d is a link-protecting LFA if [10]:

dist(n, d) < dist(n, s) + dist(s, d) . (1)

That is, any neighbor that is not an upstream in the shortest
path tree is a link-protecting LFA. Besides node b, e also has
an LFA to f (the same d as that of b), and so has d and c (e and
d, respectively). What is more, the LFAs of b and c are node-
protecting as well, as they protect against both the failure of the
link to the next-hop and the next-hop itself. Moreover, d is also
called a per-link LFA for b, as it protects all nodes reachable
from b through the link (b, e). For a full taxonomy, see [10],

a

b

c

d

e

f

3

3

5

8

8

5

10

6

Figure 1: Sample network, edge costs and shortest paths to
node f .

[16]. As single link failures account for the majority (about
70%) of unplanned outages in a generic network [33], we shall
treat only this type of failures in the sequel. Consequently, the
term LFA will refer to link-protecting LFAs exclusively. Other
LFA types are for further study.

We observe that, in the present network topology with the
given link costs, node a does not have an LFA to f . This
is because it has only two neighbors, one is the next-hop d
towards f whose failure we want to protect, and the other
is an upstream node, which cannot provide an LFA by (1).
Given a graph G(V,E) and a cost function c, let Is,d(G, c) be
an indicator variable whose value is 1 if node s has an LFA
to node d, and zero otherwise. Then, given a set of source-
destination pairs S = {(sk, dk) : k ∈ 1, . . . ,K, sk 6= dk}
the LFA coverage with respect to S is defined as (inspired
by [10]):

ηS(G, c) =
1

|S|
∑

(s,d)∈S

Is,d(G, c) .

We shall often confine ourselves to the special cases when S is
the set of all node pairs whose destination is a given terminal
node d: Sd = {(s, d) : s ∈ V \ {d}}, or when S contains
all distinct node pairs in V × V . In the latter case, we shall
neglect to indicate S in the LFA coverage metric and simply
write η(G, c).

As our example shows, usually not all nodes have LFA to
all destinations. There are basically two ways to remedy this:
by adding new edges to the graph or by altering the edge costs.
Taken the example of Fig. 1, adding the new edge (a, b) to E
and setting its cost to, say, 10, will let b to become an LFA of a
(and vice versa). The LFA graph extension problem asks, how
to achieve maximal LFA protection by adding the minimum
number of new edges. We address this problem in a separate
paper [17]. The other way is to change edge costs: if we, for
instance, reduce the cost of edge (c, d) from 8 to 5, then c’s
shortest path to f will bypass a and so a and c will become
LFAs for each other. This paper is devoted to investigate this
very problem, called the LFA cost optimization problem:

Definition 1: LFACostOpt(G, S): Given a graph G(V,E)
and a set of source-destination pairs S, is there a cost function
c so that ηS(G, c) = 1?
We shall in many cases treat the optimization version of
LFACostOpt(G, S), that is, we shall seek the costs that
maximize network-wide LFA coverage.

IV. LFA FAILURE COVERAGE ANALYSIS

Before turning to discuss how to solve the LFA cost
optimization problem, first we show some simple theoretical
limits on LFA coverage, intended to serve as a guideline for
network operators to quickly assess the LFA-protectability of
their network. In particular, we give simple graph theoretical
lower and upper bounds on the LFA coverage achievable in a
given graph under any selection of link costs. In what follows,
we shall assume that S = (V × V) \ {(v, v) : v ∈ V }.

Some preliminaries. Let ∆ denote the average node degree
in G and let ∆max be the maximum degree. Easily, ∆ ≥
2(n−1)

n for any connected graph, since the sparsest connected
graphs are trees for which ∆ = 2(n−1)

n . A ∆-regular graph
is a graph in which all nodes are of constant degree ∆. An
even (odd) ring is a cycle graph with an even (odd) number of
nodes. Rings are the smallest-degree 2-edge-connected regular
graphs (in particular, ∆ = 2).

In [17], we identified the following fundamental lower and
upper LFA coverage bounds.

Proposition 1: The LFA coverage in a 2-edge-connected
graph G(V,E) on n nodes (n ≥ 3) is bounded by 1

n−1 ≤
η(G, c) ≤ 1, and the lower bound is tight for even rings and
uniform edge costs. For odd rings, η(G, c) = 2

n−1 with c
uniform.

In the rest of this section, we discuss how to sharpen the
above bounds. The idea is that the shortest path tree to some
destination d can contain only n − 1 edges, and all further
edges provide at least 1, and at most 2, nodes with LFAs
towards d. Consider the following lemma.

Lemma 1: For any connected simple graph G with n > 2,
η(G, c) ≤ n

n−1 (∆− 2) + 2
n−1 .

Proof: An edge not contained in the shortest path tree
rooted at some d provides at most 2 LFAs towards d. This
occurs when the edge lies between two branches of the tree.
Since the number of such out-of-tree edges is exactly m −
(n − 1), at most 2(m − n + 1) = n∆ − 2n + 2 = n(∆ −
2)+2 nodes can have LFA to d. Taken the sum over all nodes
and dividing by the number of source-destination pairs gives
η(G) ≤ n(n(∆−2)+2)

n(n−1) = n
n−1 (∆− 2) + 2

n−1 .

The Lemma is non-trivial for 2(n−1)
n ≤ ∆ < 3. For trees,

in particular, we obtain η(G, c) ≤ 0, which implies that the
Lemma is tight for trees over arbitrary link costs. It is tight for
uniform cost odd rings as well, for which we obtain η(G, c) ≤

2
n−1 (c.f., Proposition 1).

Lemma 2: For any connected simple graph G with n > 2,
η(G, c) ≥ n

n−1

∆
2 −1

∆max−1 + 1
(n−1)(∆max−1) .

Proof: Again, exactly n − 1 nodes are contained in the
shortest path tree of d, and an out-of-tree edge (of which we
have m−n+1) can provide at least one LFA towards d (if the
edge is inside a single branch of the shortest path tree, then it
provides LFA from the upstream to the downstream). So there
are m − n + 1 out-of-tree edges that are incident to at least
m−n+1
∆max−1 =

n(∆
2 −1)+1

∆max−1 nodes providing LFA to them towards d
(∆max − 1 because every node has at least one in-tree edge,
so only the rest count as out-of-tree edges). Taking the sum

over all nodes and dividing by n(n − 1) gives the required
result.

Corollary 1: For a ∆-regular graph R∆ on n nodes,
η(R∆, c) ≥ 1

2 −
1
2

n−∆−1
(n−1)(∆−1) .

This gives η(R2, c) ≥ 1
n−1 and η(R3, c) ≥ 1

4 + 3
4

1
n−1 > 1

4 .
From this, we conclude that the lower bound of Lemma 2 is
tight for even rings (again, by Proposition 1). One easily sees
that it is tight for trees as well, for which we get η(G, c) ≥ 0.

The above analysis helps us identify an interesting extreme
case for LFA coverage. In particular, we find that the 2-
connected graph with the smallest possible average degree
that can be fully protected using LFA is the 3-ring C3. Every
other 2-connected graph with complete LFA coverage has
average degree higher than 2. From Proposition 1, we have
η(C3, c) = 1, which is attained when c is uniform, and one
easily sees that η(C3, c) is the only 2-connected graph of
average degree ∆ = 2 with this property. Graphs with ∆ < 2
cannot have full protection because such graphs contain at least
one node with degree 1 whose single outgoing link can never
be protected. On the other hand, larger 2-connected graphs
with ∆ = 2 are all ring topologies, and rings can only have
full LFA coverage if n = 3 (again, by Proposition 1).

V. LFA COST OPTIMIZATION

Next, we turn to the LFA cost optimization problem. This
problem asks for an IGP link cost setting that maximizes the
LFA coverage, given the inherent limitations of the network
topology under consideration. First, we characterize the extent
to which such an optimization can improve LFA coverage, then
we discuss the complexity and the algorithmic aspects of the
problem.

A. The potential of LFA cost optimization

The question immediately arises as to whether it is worth
optimizing costs for LFA at all. Easily, readjusting costs in
most of the cases alters, possibly in a negative way, default
shortest paths, which might have been previously tweaked with
great accuracy to match the needs of the network in terms of
load balancing, traffic engineering, etc. [28], [30], [31]. On
the other hand, as shall be shown through an example below,
the wins achievable with optimizing link costs for LFA can be
substantial (more than 50%), and such a huge improvement in
fast resiliency might compensate for the losses in forwarding
efficiency in certain cases.

Consider the so called “Möbius ladder” topologies depicted
in Fig. 2. These graphs consist of an even ring with all the main
diagonals added. In Fig. 2a, the cost of diagonals is chosen so
that the path between any two nodes is shorter around the ring
than through it via a diagonal. This way, as one easily checks,
the graph has complete LFA coverage. The graph construction
can be generalized to arbitrary even n, and one can always
choose the above cost setting strategy to achieve complete LFA
protection. Fig. 2b also depicts a Möbius ladder (for n = 10),
just with setting costs uniformly at all edges and drawn in a
slightly awkward layout. The layout was chosen so that one
can easily check the validity of the following claim for any

1

1

1

1
1

1

4
4 4

(a) η(G, c) = 1

d

1 1 1 1 1
1 1 1 1

1 1 1 1

1

1

(b) η(G, c) < 1
2

Figure 2: Möbius ladder topologies.

Möbius ladder with n
2 odd, n > 2 and c uniform: for every

d ∈ V , exactly n
2 − 1 nodes have LFA. Considering the node

d we marked in Fig. 2b, there is exactly one node in each
“column” that has an LFA to d, except for the column of d
in which there is no protected node. This gives η(G, c) =
1
2 −

1
2

1
n−1 <

1
2 . For instance, in our example η(G, c) = 4

9 .
This example shows that different selections of edge costs

can produce dramatical differences in LFA failure case cov-
erage. Simulation studies presented later also seem to support
this claim. The other lesson is that resilience and forwarding
efficiency are usually contradicting requirements in routing: in
our example in the latter case all traffic flows along min-hop
paths but resilience is poor, while in the former case we have
full protection but long forwarding paths going around the
ring instead of taking the shortcuts through it. Such “joker”
links that do not carry traffic seem a general requirement for
protectability [11].

B. Complexity

Next, we turn to discuss how to solve the LFA cost
optimization problem as of Definition 1. First, we characterize
the computational complexity of the problem.

Theorem 1: The LFA cost optimization problem
LFACostOpt(G, S) is NP-complete.

This result is not particularly unexpected, as we found
basically all other LFA-related network optimization problems
NP-complete [17]. Taking a closer look, we find that there
are two reasons due to which the problem is difficult. First,
there is an inherent coupling between the LFAs to different
destinations through the link costs, which makes it difficult to
make independent decisions. In particular, assigning a neigh-
bor as an LFA towards some destination necessitates adjusting
edge costs accordingly, but this may destroy LFAs to other
destinations. Second, even assigning LFAs to just a single
destination seems difficult enough. Consider the following
theorem.

Theorem 2: Given a graph G(V,E) and a node d ∈ V ,

LFACostOpt(G, Sd) with Sd = {(s, d) : s ∈ V \ {d}} is
NP-complete.

For a complete proof, see the Appendix.
Obviously, Theorem 2 proves Theorem 1 stated for the gen-

eral case LFACostOpt(G, S) as well, of which LFACostOpt(G,
Sd) is a special case. Additionally, we also observe that the
optimization version, which asks for a cost maximizing LFA
coverage, is also intractable.

C. Algorithms

LFA cost optimization is difficult, yet solving it would be
extremely useful for improving the resilience in operational
IP networks. Next, we give an Integer Linear Program (ILP)
suitable for obtaining optimal solutions only in small networks,
then we discuss a heuristics better suited to large networks.
For simplicity, we assume that S contains all distinct node-
pairs (even though the algorithms are easy to generalize to
arbitrary S).

The ILP is formulated in the dual space: to every node i we
assign a node potential πd

i that signifies the shortest distance
from i to some d over the costs c, and then we require that
the potentials and the costs together fulfill the Shortest Path
Optimality Criteria [34] while also maximizing LFA coverage.

max
∑

(s,d)∈S

αd
s (2)

πd
j + sdij = πd

i + cij , 0 ≤ sdij ≤ Cydij
∀(s, d) ∈ S,∀(i, j) ∈ E

(3)∑
v∈Ns

ydsv ≤ |Ns| − 1 ∀(s, d) ∈ S (4)

ydsv ∈ {0, 1} ∀(s, d) ∈ S,∀v ∈ Ns (5)

πs
v − πs

s + πd
s − πd

v + zdsv ≤ 0, 0 ≤ zdsv ≤ 1

∀(s, d) ∈ S,∀v ∈ Ns

(6)∑
v∈Ns

zdsv ≥ αd
s , 0 ≤ αd

s ≤ 1 ∀(s, d) ∈ S (7)

cij = cji, cij ∈ {1, . . . , Cmax} ∀(i, j) ∈ E (8)

In the ILP, (3)–(5) enforce the Shortest Path Optimality
Criteria: for each edge (i, j), πd

j ≤ πd
i +cij and the inequality

is satisfied with strict equality for at least one neighbor. This
is to ensure that the node potentials πd

i correctly encode the
shortest path distances with respect to the destination node
d over the cost setting c. Furthermore, (6)–(7) represent the
LFA condition as of (1): by (6) zdsv is an indicator variable
whose value is positive if and only if v is an LFA from s to
d, and (7) ensures that αd

s only becomes positive if at least
one neighbor of s provides LFA towards d. The requirements
(8) guarantee that costs are symmetric and are selected from
the interval {1, . . . , Cmax}. Finally, the objective function (2)
maximizes the number of LFA protected node pairs. There are
two problem parameters to the ILP: Cmax is the maximum
permitted cost, while C ≥ nCmax is the maximum allowed
potential difference between two neighboring nodes.

The ILP has O(n3) integer variables, which makes it
intractable in anything but the smallest topologies. Therefore,

Algorithm 1 Heuristic LFA cost optimization algorithm. Input
is graph G.

1: c← random_cost(Cmax), T ← T0

2: while T > 0 and η(G, c) < 1
3: c′ ← argmax

q∈neigh(c)

η(G, q)

4: if η(G, c′) > η(G, c) or T > random(T0) then
5: c← c′

6: end if
7: T ← T − 1
8: end while

we also present an approximate algorithm roughly modeled
after the Simulated Annealing probabilistic metaheuristic. The
idea is to, starting from a randomly chosen cost c, search for
the best c′ “nearby” c and accept c′ if either c′ provides larger
LFA coverage than c (greedy step) or c′ is worse than c but the
temperature T of the system is sufficiently large (escape from
a local minimum). As the algorithm progresses we gradually
reduce T , thus the system will increasingly tend to get stuck
in a good quality local minimum.

The pseudo-code for the approximate algorithm is given in
Alg. 1. The subroutine random_cost(C) returns a random
initial cost in the range {1, . . . , Cmax} for each link. The
routine neigh(c) returns a positive, integral cost setting
obtained by increasing or decreasing (if possible) the cost
c at exactly one edge by 1. Line 3 searches for the best
such neighbor. We unconditionally accept this cost if it is
better than the previous one. Additionally, we also accept it
if a random number generated in the range [1, T0] by the
subroutine random(T0) is below T . Thus, the algorithm
easily escapes from local minima initially, to eventually settle
in a good local minimum by only letting greedy steps when
T is low. The input to the heuristic is the graph G(V,E),
initial temperature T0 and maximum allowed cost Cmax, and
the output is the final cost c. The complexity of the algorithm
is O(T0mn

3), dominated by the need to evaluate η(G, q)
(needing O(n3) steps) in each iteration for each 2m neighbor
q of the current cost c.

VI. NUMERICAL EVALUATIONS

In the course of our numerical studies, first we were
curious as to how close the approximate LFA cost optimization
algorithm can get to the optimum. Therefore, we implemented
the ILP (3)–(8) and the heuristics as described in Alg. 1.
We found that about the largest non-trivial graphs for which
the ILP can be solved are of 8 nodes. Unfortunately, very
few real topologies of this small size are available in the
literature. Thus, the first round of the evaluations were run on
Erdős-Rényi random graphs (n = 8, expected node degree 3).
Out of the 20 random graphs generated, 17 was 2-connected.
For each topology, the simulated annealing was executed 500
times (T0 = 150, Cmax = 20) and the cost c∗ that attained
the highest LFA coverage was selected. A tabu list of size
20 was also applied in order to preclude the heuristics from

oscillating. Table I gives some characteristics of the graphs
(number of nodes n, and number of links m); the theoretical
lower and upper bounds on LFA coverage (as of Lemma 1
and Lemma 2); and the actual LFA coverage η(G, copt) for the
costs copt obtained by the ILP and the heuristics (η(G, c∗)).
We observe that from the 17 experiments only in 2 cases the
approximation did not find the optimum (these experiments
are marked by an asterisk in Table I), and the difference is at
most 2-3% in LFA coverage. This indicates that in small net-
works the simulated-annealing-based heuristics performs quite
efficiently. Additionally, we found that the theoretical bounds
provide a solid estimate on the LFA coverage. Especially the
upper bound seems to be of practical relevance.

In the second round, we examined the performance of
the approximate LFA cost optimization algorithm in larger
real network topologies where the ILP could not be solved
to optimality. We used inferred ISP data maps from the
Rocketfuel dataset [35] (AS1221, AS1239, AS1755, AS3257,
AS3967 and AS6461). We obtained approximate POP-level
maps by collapsing the topologies so that nodes correspond
to cities and we eliminated leaf-nodes (this preprocessing
method was suggested in [29]). These networks come with
inferred link costs (these costs are needed to compute the
“default” LFA coverage η(G, c) of the network). We also chose
some network topologies from [36], namely, the Abilene, Italy,
Germany, NSF and AT&T networks and the 50 node extended
German backbone (Germ_50). Unfortunately, except for the
last network no valid link costs were available, so we set each
cost to 1. We also chose some representative ISP topologies
from [37], in particular, the Arnes, Deltacom, Geant, and
the InternetMCI topologies. Link costs were set inversely
proportional to the link capacities (this setting is recommended
by Cisco, see documentation on ospf auto-cost in [38]).
Additionally, we also ran the evaluations on some artificial
topologies with uniform costs. In particular, Mn are the
Möbius ladder graphs of n nodes as discussed in Section V.

Table II shows, in the order of the appearance: the char-
acteristics of the topologies (name, number of nodes n and
edges m, and the average node degree ∆); the LFA coverage
obtained by the original link cost setting for the graphs; and the
LFA coverage η(G, c∗) for the best cost function c∗ obtained
by the approximate algorithm. There was only one topology
on which we could solve the ILP to optimality: AS1221. For
this particular network, the approximate solution matches the
ILP optimum (η(G, copt) = η(G, c∗) = 0.833).

Our observations are as follows. First, we found that the
LFA coverage η(G, c∗) produced by the approximate algo-
rithm is usually significantly higher than the LFA coverage
produced by the network’s original cost setting. The im-
provement almost always exceeds 5%, but in many cases it
attains about 15-20% (e.g., AS1239, AS3967, or the Italian
backbone). This suggests that optimizing costs specifically
for LFA usually attains significant improvement in network
resilience. The improvement is especially significant for the
artificial networks. Second, for large Möbius ladder graphs the
approximation could not get closer than 10% to the optimum

Table I: LFA cost optimization in random topologies.

Num n m Lower/Upper η(G, copt) η(G, c∗)

1* 7 11 0.278/1 1 0.976
2 8 9 0.095/0.571 0.536 0.536
3* 8 13 0.214/1 1 0.982
4 7 11 0.278/1 1 1
6 8 9 0.143/0.571 0.571 0.571
9 7 11 0.208/1 0.952 0.952
10 8 11 0.114/1 0.857 0.857
11 8 10 0.143/0.857 0.75 0.75
12 8 9 0.095/0.571 0.429 0.429
13 8 11 0.143/1 0.911 0.911
14 8 11 0.19/1 0.821 0.821
15 8 11 0.19/1 0.946 0.946
16 7 8 0.111/0.667 0.5 0.5
17 8 14 0.2/1 1 1
18 8 11 0.114/1 0.714 0.714
19 8 9 0.143/0.571 0.482 0.482
20 8 10 0.143/0.857 0.679 0.679

Table II: LFA cost optimization in real and artificial topologies.

Name n m ∆ η(G, c) η(G, c∗)

AS1221 7 9 2.57 0.809 0.833
AS1239 30 69 4.60 0.873 0.957
AS1755 18 33 3.66 0.872 0.98
AS3257 27 64 4.74 0.923 0.997
AS3967 21 36 3.42 0.785 0.967
AS6461 17 37 4.35 0.933 0.996
Abilene 12 15 2.5 0.56 0.701
Italy 33 56 3.39 0.784 0.919
Germany 17 25 2.94 0.695 0.889
NSF 26 43 3.3 0.86 0.95
AT&T 22 38 3.45 0.822 0.984
Germ_50 50 88 3.52 0.9 0.934
Arnes 41 57 2.78 0.623 0.702
Deltacom 113 161 2.85 0.577 0.662
Geant 37 55 2.97 0.69 0.74
InternetMCI 19 33 3.47 0.904 0.932
M6 6 9 3 0.4 1
M10 10 15 3 0.444 0.933
M18 18 27 3 0.470 0.879
M30 30 45 3 0.482 0.89

(which we know is η(G, copt) = 1 in this case). This indicates
that in larger topologies the efficiency of the heuristics we
identified in small networks might not be present. Last but
not least, we observe that the final LFA coverage η(G, c∗)
in many real network topologies is more than 95%. The
denser the network, the higher the LFA coverage. It seems
that networks with an average node degree exceeding about
3.5 lend themselves especially well to LFA cost optimization
(AS1239, AS1755, AS3257, AS6461, AT&T, Germ_50): in
these networks even the default cost settings yield a higher
than 80% LFA coverage and our cost optimization tool can
bring these networks well beyond 95% and close to 100% in
many cases. Networks of average degree 3 are still amenable to

LFA, but when the degree falls below 3 the chances of getting
a high LFA coverage rapidly vanish. For sparser networks (like
the Abilene topology), the final LFA coverage η(G, c∗) is a
mere 70%. These observations are in line with our theoretical
analysis in Section IV. Note, however, that node degree alone
is not sufficient to assess the extent to which LFA can protect
a network, as there are topologies (the Möbius ladder graphs)
that have small average degree of 3 but still complete LFA
protection over some appropriately chosen costs. It seems that
LFA cost optimization is most difficult when the degree is
about 3.

Our results suggest that most real network topologies,
which are usually richly connected and highly redundant, lend
themselves readily to LFA cost optimization and almost perfect
LFA coverage can be achieved in most of the cases. There
were, however, some exceptional topologies where LFA cost
optimization was less appealing. For such networks, LFA is
not an acceptable option and operators need to look after more
efficient alternatives [39].

VII. CONCLUSIONS

In this paper, we have assessed the possibilities of improving
fast resilience in operational IP networks using the Loop Free
Alternates method. The motivation for choosing LFA over its
alternatives is its simplicity, easy deployability, and availability
in IP routers. We presented new tools to quickly estimate LFA
failure case coverage and we sought ways to improve it by
carefully adjusting IGP link costs. We showed that this prob-
lem is NP-complete and we proposed a simplistic simulated-
annealing-based approximation, using which we could achieve
close to perfect LFA coverage in many real-world network
topologies. Considering that LFA is just a router-configuration
command away in many modern IP networks, we believe
that this result has huge practical relevance. Nevertheless, we
also found that some topologies are less amenable to LFA
cost optimization. Future work involves combining the LFA
network optimization tools we gave in [17] and the algorithms
presented herein to improve IP-level fast resilience in such
notorious network topologies.

REFERENCES

[1] M. Shand and S. Bryant, “IP Fast Reroute framework,” RFC 5714, Jan
2010.

[2] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive
vs reactive approaches to failure resilient routing,” in INFOCOM, 2004.

[3] I. Hokelek, M. Fecko, P. Gurung, S. Samtani, S. Cevher, and J. Sucec,
“Loop-free IP Fast Reroute using local and remote LFAPs,” Internet
Draft, Feb 2008.

[4] A. Li, X. Yang, and D. Wetherall, “SafeGuard: safe forwarding during
route changes,” in ACM CoNEXT, 2009, pp. 301–312.

[5] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Mul-
tiple routing configurations for fast IP network recovery,” IEEE/ACM
Trans. Netw., vol. 17, no. 2, pp. 473–486, 2009.

[6] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP Fast Reroute using
tunnels,” Internet Draft, Nov 2007.

[7] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using Not-via
addresses,” Internet Draft, March 2010.

[8] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “IP Fast ReRoute:
lightweight Not-Via without additional addresses,” in INFOCOM Mini-
conf, 2009.

[9] A. Li, P. Francois, and X. Yang, “On improving the efficiency and
manageability of NotVia,” in ACM CoNEXT, 2007.

[10] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-Free
Alternates,” RFC 5286, 2008.

[11] C. Reichert and T. Magedanz, “Topology requirements for resilient IP
networks,” in MMB, 2004, pp. 379–388.

[12] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang, “On the feasibility
and efficacy of protection routing in IP networks,” in INFOCOM 2010,
long version appears as Tech. Rep. 2009, University of Pennsylvania,
2010.

[13] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute
techniques,” in ACM CoNEXT, 2005, pp. 244–245.

[14] S. Previdi, “IP Fast ReRoute technologies,” APRICOT, 2006.
[15] M. Gjoka, V. Ram, and X. Yang, “Evaluation of IP fast reroute

proposals,” in IEEE Comsware, 2007.
[16] C. Filsfils et al., “LFA applicability in SP networks,” Internet Draft,

March 2010.
[17] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP Fast ReRoute:

Loop Free Alternates revisited,” in INFOCOM, 2011, pp. 2948–2956.
[18] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate

link overload as observed on an IP backbone,” in INFOCOM, 2003.
[19] H. T. Viet, P. Francois, Y. Deville, and O. Bonaventure, “Implementation

of a traffic engineering technique that preserves IP Fast Reroute in
COMET,” in Rencontres Francophones sur les Aspects Algorithmiques
des Telecommunications, Algotel (2009), 2009.

[20] M. Menth, M. Hartmann, and D. Hock, “Routing optimization with IP
Fast Reroute,” Internet Draft, July 2010.

[21] M. Menth, M. Hartmann, R. Martin, T. Čičić, and A. Kvalbein, “Loop-
free alternates and not-via addresses: A proper combination for IP fast
reroute?” Comput. Netw., vol. 54, no. 8, pp. 1300–1315, 2010.

[22] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,
“Failure inferencing based fast rerouting for handling transient link and
node failures,” in INFOCOM, 2005.

[23] G. Enyedi, G. Rétvári, and T. Cinkler, “A novel loop-free IP fast reroute
algorithm,” in EUNICE, 2007.

[24] G. Schollmeier, J. Charzinski, A. Kirstadter, C. Reichert, K. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP networks,”
in High Performance Switching and Routing, 2003, HPSR. Workshop on,
2003, pp. 91–96.

[25] A. Csaszar, G. Enyedi, and S. Kini, “IP Fast Re-Route with Fast
Notification,” Internet Draft, March 2011.

[26] Cisco Systems, “Cisco IOS XR Routing Configuration Guide, Release
3.7,” 2008.

[27] Juniper Networks, “JUNOS 9.6 Routing protocols configuration guide,”
2009.

[28] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Comm. Mag., vol. 40, no. 10, pp. 118–124,
Oct 2002.

[29] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs,” in ACM SIGCOMM, 2003, pp. 313–324.

[30] G. Swallow, S. Bryant, and L. Andersson, “Avoiding equal cost multipath
treatment in MPLS networks,” RFC 4928, June 2007.

[31] M. Thorup and M. Roughan, “Avoiding ties in shortest path first routing,”
2001, aT&T, Shannon Laboratory, Florham Park, NJ, Technical Report,
http://www.research.att.com/~mthorup/PAPERS/ties_ospf.ps.

[32] G. Rétvári, R. Szabó, and J. J. Bíró, “On the representability of arbitrary
path sets as shortest paths: Theory, algorithms, and complexity,” in
Lecture Notes in Computer Science: Proceedings of the Third Inter-
national IFIP-TC6 Networking Conference, Athens, Greece, May 2004,
pp. 1180–1191.

[33] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Ganjali,
and C. Diot, “Characterization of failures in an operational IP backbone
network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–762, 2008.

[34] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms
and Applications. Prentice-Hall, New Jersey, 1993.

[35] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in ACM IMC, 2002, pp. 231–
236.

[36] SNDlib, “Survivable fixed telecommunication network design library,”
http://sndlib.zib.de.

[37] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” http://www.topology-zoo.org.

[38] Cisco Systems, “Cisco IOS Release 12.0, Network Protocols Configu-
ration Guide,” 2011.

[39] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” RFC 4090, 2005.

APPENDIX

Proof of Theorem 2: Easily, LFACostOpt(G, Sd) is in NP.
To prove NP-hardness, we show that it is essentially equivalent
to the protection routing problem, proved to be NP-complete
in [12].

Definition 2: PR(G, d): given a graph G(V,E) and some
d ∈ V , is there a directed spanning DAG Rd(V,Ed) : Ed ⊆ E
rooted at d, so that for any single node or link failure f every
node s ∈ V \ {d} has a neighbor k : (s, k) /∈ Ed for which
it holds that (i) k is not upstream of s in Rf

d , and (ii) there
is a k → d path in Rf

d , where Rf
d is obtained from Rd by

removing the failed component f .
The basic differences are that (a) LFACostOpt(G, Sd) is

defined in terms of costs, while PR(G, d) in terms of a routing
DAG Rd, (b) PR(G, d) is for both node and link failures, while
LFACostOpt(G, Sd) is only for link failures, and (c) item (ii) in
the above definition. To show equivalence, we need to handle
all these differences.

First, we show that a cost function c uniquely determines
Rd and vice versa, in that we can show a mapping from c
to Rd so that a path is shortest path over c if and only if it
is contained in Rd (this will handle (a)). Easily, the shortest
paths over c are always in a DAG. The reverse direction, that
is, taking Rd and creating a cost c of it, is equally easy: take
a topological ordering o(v) : v ∈ V of Rd (this always exists)
and for each (i, j) ∈ E set c(i, j) = o(j)− o(i) if (i, j) ∈ Ed

and c(i, j) = n otherwise.
Second, taking a close look on the NP-completeness proof

of PR(G, d) in [12], we observe that the proof remains valid if
we treat link failures only and disregard node failures. Thus,
we can a state stronger claim: PR(G, d) is NP-complete, even
if we only allow link failures. This handles (b).

Finally, (c) means that in PR(G, d) we only take a node for
protected, if after a failure f all its downstream neighbors’
path in Rd avoids f . However, when we only consider single
link failures, item (i) guarantees this.

