2014 Third European Workshop on Software-Defined Networks

Multi-layered service orchestration in a
multi-domain network environment

Attila Csoma', Baldzs Sonkoly!, Levente Csikor!, Felicidn Németh!, Andrds Gulyas'
Dévid Jocha2, Janos Elek?, Wouter Tavernier®, Sahel Sahhaf®
Y BME, Hungary; ® Ericsson Research, Hungary; ® iMinds, Belgium

Abstract—In this demo, we show a novel method to multi-
layer service orchestration in a multi-domain network. This
method is a basic implementation of the three layered concept
with multi-layer orchestration designed by the UNIFY project. A
global orchestrator is capable of instantiating service elements,
i.e., virtual network functions (VNFs), in separate domains.
Dedicated local orchestrators in different infrastructure domains
are responsible for setting up new VNF instances and configuring
the underlying network. Our implementation is based on the
ESCAPE prototyping framework and an OpenStack (OS) data
center with the OpenDaylight (ODL) controller.

I. INTRODUCTION

In today’s networks, services are strongly coupled to the
physical topology, the capabilities of expensive middleboxes
and the placement of special purpose hardware elements. As
a consequence, service provisioning and service deployment
have several limitations in terms of dynamicity, scalability,
flexibility and optimal usage of resources. Network Functions
Virtualization (NFV) is an effort to make telecommunication
services and service components software-based as much as
possible!. By this means, whole services or service elements
can run in virtualized environment on a wide range of general
purpose hardwares which makes service deployment, config-
uration and operation easier. Moreover, the usage of different
types of resources (e.g., compute and storage) can be optimized
in a more flexible way and several tools are available from
the Cloud world. Besides packet processing tasks assigned to
(physical or virtual) network functions, steering traffic flows
between these service elements is an indispensable part of
service provisioning and SDN enables to realize it efficiently.
Furthermore, we can invoke service chains or more generally
service graphs in order to describe high level services in
a generic way and to assemble processing flows (series of
network functions) for given traffic’.

UNIFY (http://www.fp7-unify.eu) is an EU-funded FP7
project®, which aims at unifying Cloud and carrier networks
by developing an automated, dynamic service creation archi-
tecture based on a dynamic fine-granular service chaining
model leveraging Cloud virtualization techniques and SDN.
The architecture proposed by UNIFY comprises three relevant
layers (see left part of Fig. 1). Service layer is aware of
the service logic, handles service requests, and is responsible
for SLAs. The multi-level Orchestration layer is responsible

'ETSI has a dedicated working group on NFV.

2IETF has a dedicated working group (Service Function Chaining Working
Group) dealing with several aspects of the service chaining architecture.

3This work was conducted within the framework of the FP7 UNIFY project,
which is partially funded by the Commission of the European Union.

978-1-4799-6919-7/14 $31.00 © 2014 IEEE
DOI 10.1109/EWSDN.2014.32

141

for mapping service requests to available resources exposed
by multiple domains with different capabilities. The unified
orchestration modules at different levels optimize the usage of
different types of resources based on an abstract network and
resource view (global or local). Infrastructure layer contains
physical and virtual resources including compute, storage and
networking resources.

In [1], we have presented a prototyping framework, named
ESCAPE, for this architecture supporting single-layer service
orchestration. In this demonstration, we extend that framework
with multi-layer orchestration over multiple domains. Our
unified orchestration framework supports light-weight, virtual
domains realized by Mininet [2] and data centers managed by
OpenStack [3] as well. It is capable of setting up and configur-
ing service chains on demand, mapping virtual network func-
tions (VNFs) to resources, steering traffic according to chains’
policies, and providing real-time management information on
running VNFs. The system makes use of widely used tools,
such as Click [4], POX [5], OpenDaylight [6] and NETCONF
integrated into a common framework.

II. ARCHITECTURE

The main components of our framework are shown in
Fig. 1. Following UNIFY project’s approach, the orchestration
is spanning through multiple domains and service graphs can
be instantiated by third parties. For this reason, we developed
communication interfaces and an abstract view of a whole do-
main which can be adopted by a global orchestrator to use the
resources in a separate domain through its local orchestrator.
Our framework currently supports Mininet-based virtual do-
mains and data centers managed by OpenStack/OpenDaylight
called as OS/ODL domain. VNFs are implemented in Click
and in case of a Mininet domain, they run as distinct processes
with configurable isolation models, while in OS/ODL domain,
virtual machines are deployed to run Click processes. We
have a VNF catalog storing available and deployable network
functions. The infrastructure comprises OpenFlow switches
and VNF containers (managed nodes) hosting VNFs, while
a dedicated controller application (implemented in POX) is
responsible for traffic steering.

Our aim is to provide an abstract view of our OS/ODL
domain for the ESCAPE orchestrator. We expose the whole
domain as a simple node with the capability of service graph
instantiation which is managed solely by the domain’s local
orchestrator. By the global orchestrator of ESCAPE, this
domain is treated as another VNF container. The global or-
chestrator has a global view of the available resources and the
capabilities of each node running in its domain. It is capable of

cprs™

Conference Publishing Services

Application Layer:
user / other provider
—

Service Graph manager

Service
Provider

edllor

_ Service Graph VNF mgmt
config (Clicky)

Service

Layer

‘ Orchestrator

Mapping ‘

roting module:

netconf
traffic steering

client

Orchestration
Layer

dedicated
ctrl & mgmt network

.

—

OS/ODL domain ("Node");

OpenStack datacenter
Nova

Mininet domain|

Orchestration
Layer

NC port

netconf
agent

port:
830

Infrastructure | | Infrastructure
Layer Layer

Mininet Container #1 ("Node");

VNF

click

instance

V2l

Neutror

Open
Daylight
controller

O
-

UNIFY architecture:
multi-layer orchestration

transport network.
(OpenFiow)

Fig. 1.

i | host |
| | process | |

path “
0S/ODL domain nétwork
datapa

Host #2 |

s2-eth1] | s2-eth2 s2-ethd

datapath #2

[n2-eth2 [n2-eth3

Logical view of the demo scenario. On the left the UNIFY project’s concept with multi-layer orchestration, on the right our demo’s logical elements.

The corresponding main components to the layers are the GUI, the global orchestrator and the Mininet and OS/ODL domains, the latter with a local orchestrator.

partitioning a service graph into multiple subgraphs which can
be given to the OS/ODL domain for further decomposition and
instantiation. In the simplest case the subgraph could comprise
only one network function which would be instantiated in the
OS/ODL domain’s data center. After successful instantiation of
the subgraph, the OS/ODL domain’s local orchestrator notifies
the global orchestrator and provides information on access to
the newly created network function.

Similarly to Mininet containers, OS/ODL domain has two
control interfaces implemented by dedicated components. The
first one is an OVS switch steering traffic between the edge of
the domain and specific ports on which the instantiated net-
work functions are reachable. The second one is a NETCONF
agent module which is implemented in the ODL controller
and tightly integrated with its framework. The plugin calls the
REST API of the OS (“Nova”) to request a network function
which is then initiated in the data center as a virtual machine.
After the network function is booted up and the relevant net-
work configurations are deployed in the data center’s network,
the ODL controller sets up an overlay topology in the domain’s
network and creates a new port in the OVS switch which is
directly connected to the overlay. This port’s id is signaled back
to the global orchestrator through the NETCONF protocol.
Note that the edge domain OVS switch has only one master
controller which is the global orchestrator. The ODL controller
has the right to create ports on this switch but nothing more.

142

In our implementation the OS cloud’s internal networking is
controlled by the same ODL controller which is responsible
for the domain network. The OS makes network configuration
requests to the ODL via it’s “Neutron” REST API. Then ODL
configures the DC’s internal datapath elements via OpenFlow.

During the demo, a complex service described by a service
graph (with given requirements) will be requested via the
service layer’s global orchestrator’s GUI. This complex service
will be decomposed by the orchestrator to smaller blocks.
Some of these blocks will be instantiated in Mininet containers,
while others in the OS/ODL cloud which makes further local
orchestration. This decomposition and instantiation details are
hidden from the requestor of the high level complex service.

REFERENCES

A. Csoma, B. Sonkoly, L. Csikor, F. Németh, A. Gulyds, W. Tavernier,
and S. Sahhaf, “ESCAPE: Extensible service chain prototyping envi-
ronment using mininet, click, netconf and pox,” in Proc. of the ACM
SIGCOMM 2014, 2014.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in ACM HotNets 2010.
“Openstack: Open source cloud computing software,” 2014. [Online].
Available: https://www.openstack.org/

E. Kohler e al., “The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, no. 3, pp. 263-297, Aug. 2000.

“The POX controller,” 2014. [Online]. Available: https://github.com/
noxrepo/pox

“Opendaylight sdn controller,” 2014. [Online]. Available: http://www.
opendaylight.org/

(1]

