
Open vSwitch Fall 2018 Conference

Dear OVSCON committee,

We are writing you to propose an abstract for a full talk at the 5th Open vSwitch Fall Conference
2018 held on Dec 5 and 6 at Club Auto Sport in San Jose, California.

Please find the required details below:

• Title: The Discrepancy of the Megaflow Cache in OVS
• Names, email address, and affiliation for each speaker:

– Levente Csikor (csikor@tmit.bme.hu)
Research Associate
High Speed Networks Lab, Budapest University of Technology and Economics, Hungary

– Gábor Rétvári (retvari@tmit.bme.hu)
Senior Research Associate
High Speed Networks Lab, Budapest University of Technology and Economics, Hungary

• Type of talk: Full talk

1 Background

In the beginning, the aim of Open vSwitch (OVS) was to meet the needs of the open source
networking community to provide a feature-rich OpenFlow (OF) software switch offering a so-
phisticated way to manage the underlying network of virtual machines (VMs) in Linux-based
hypervisors (e.g., KVM, XEN). Due to its continuous evolution (just to mention a few: supporting
standard management interfaces like NetFlow, complying with the latest OF standards, etc.), it
has become the de-facto standard OF software switch implementation, recently has become the
most popular network back-end for OpenStack deployments [1], and started to gain a foothold
in serverless environments (e.g., OVN/Kubernetes1). Although, to catch up with the industrial
needs, OVS had to be as fast as possible without sacrificing its most important advantages: high
programmability and generality.

To reach this end, two important parts have been introduced to the OVS forwarding plane: the
“slow-path” daemon called ovs-vswitchd running in the user space, and the “fast-path” flow caching
architecture running in the kernel space. In particular, the slow-path materializes the flow table,
which is an ordered set of wildcard rules operating over certain header fields, and a set of packet
processing primitives (i.e., actions) to be applied to matching packets. For increased flexibility,
OVS permits flow rules to overlap, however this makes packet classification rather complex since,
even in the case of non-overlapping flow rules, the complexity of any wildcard rule matching
algorithm could be exponential [2]. On the other hand, to fasten packet classification in OVS, only
the first packet of each flow is subjected to this full blown flow-table processing on the slow path,
and the flow-specific rules and actions are then cached in the fast path, which can then process
the rest of the flow’s packets efficiently.

Since OVS 1.11, this fast path is further divided into two layers of flow caches: the microflow
cache that implements a per-transport-connection exact-match store over all header fields; and the
megaflow cache (MF), which, by introducing arbitrary bitwise wildcarding to the kernel space, has
enabled the biggest performance improvement so far [1]. For the rest of our discussion, we will
concentrate on the megaflow cache exclusively.

1https://github.com/openvswitch/ovn-kubernetes

Open vSwitch 2018 Fall Conference
5th annual conference focused on
Open vSwitch and OVN

Proposal for a full talk
Levente Csikor, Gábor Rétvári

The Discrepancy of the Megaflow Cache in OVS

Open vSwitch Fall 2018 Conference

2 Contribution

Since 2015, we have been investigating the highest attainable performance of OVS in many diverse
use cases ranging from pure L2 forwarding to more complex telco access gateway scenarios. In
some cases, we have identified some (at that time considered as) inexplicable performance drops
with certain flow table entries and traffic traces even if in two measurements the use case itself
was the same so did the number of flow table entries and the number of incoming flows. Then,
we started to deeply analyze how the flow caching architecture of OVS works and what strategy
it uses to build its data structure.

The data structure used in the MF is based on the tuple-space search (TSS) scheme: a tuple is
defined for each combination of field length, and the resulted set is the “tuple space”. In case of the
MF, TSS means that entries matching on the same header fields are collected into a hash in which
masked packet headers can be found fast. To reduce complexity, the slow path ensures that MF
entries are non-overlapping, resulting in masks and associated hashes are searched sequentially
until the first matching entry is found. This means that even if hash lookup is O(1), the TSS
algorithm still has to iterate through all hashes assigned to different masks, rendering TSS a costly
linear search when there are lots of masks. To understand how this looks like in the reality, we
considered a simple Access Control List: we have a flow table with two overlapping flow rules;
packets coming from the IP range 10.0.0.0/8 are allowed, and everything else should be dropped.

ip_src action
00001010 ******** ******** ******** allow
******** ******** ******** ******** deny

(a) Binary ACL representation of the single-field net-
work policy

Key Mask Action
00001010 11111111 allow
10000000 10000000 deny
01000000 11000000 deny
00100000 11100000 deny
00010000 11110000 deny
00000000 11111000 deny
00001100 11111100 deny
00001000 11111110 deny
00001011 11111111 deny

(b) Resultant non-overlapping MF
entries

Figure 1: Simple ACL and the corresponding MF cache.

The corresponding flow table shown in Fig. 1a needs to be materialized in the MF cache in a
non-overlapping form. To reach this end, OVS tries to wildcard as many bits as possible to get
the broadest possible rules and also reduce the required number of entries per hash tables. This
strategy results in an exact-match entry for the allow-rule and 8 different key-mask pairs for testing
the rest of the header bits (see Fig. 1b). Note that here we concentrated only on the relevant first
8 bits and omitted the remaining fully wildcarded 24 bits. Naturally, in order to get the above-
mentioned realization in the OVS data path a corresponding packet sequence is also necessary to
populate the MF cache in such a way. In essence, it means that if all incoming packets are from
the 10.0.0.0/8 IP range (meaning 224 possible different IP packets), then there will only be one
entry in the MF cache, which the matching can be found blazingly fast for. However, if those
8 specific packets outside of the 10.0.0.0/8 IP range are being caught by OVS (128.0/8, 64.0/8,
32.0/8, etc.), then the MF cache will end up in the above-mentioned state. Of course, even if we
match on an exact /32 IP address instead of the whole /8 IP range, iterating through 32 different
masks/hash tables would not cause any substantial overhead for OVS2, yet, if we also define an
ACL on another header field, say the L4 destination port, the resulting MF cache could have
32 ∗ 16 = 512 masks/hash tables (due to the cross product), which could introduce significantly
increased computation time until the matching entry is found.

To put these thoughts into numbers, we have carried out extensive performance measurements in
2Especially, if OVS has sufficient resources, e.g., many CPU cores.

Open vSwitch 2018 Fall Conference
5th annual conference focused on
Open vSwitch and OVN

Proposal for a full talk
Levente Csikor, Gábor Rétvári

The Discrepancy of the Megaflow Cache in OVS

Open vSwitch Fall 2018 Conference

accordance with this finding (first, in a synthetic KVM-based environment [3]), and it turned out
that the tediously designed flow caching architecture offering a ludicrous speed for OVS can, in
certain cases, produce the contrary: with certain flow rules and traffic patterns it can be exhausted
in such a way that most of the packet classification will be done in the slow path resulting in a
huge performance penalty. In particular, we found the even with 512 masks/hash tables3 we can
slow OVS down to 10 − 20% of its peak performance. Moreover, if we also introduce a filtering
rule on the L4 source port, it would yield 8192 masks/hash tables resulting in a performance drop
to zero. Note that due to the fact that an entry (without a subsequent hit) remains “hot” in the
MF cache for 10 seconds, hence the sending rate of those 8192 packets does not even need to be
fast-paced: rate of less than 1000 packets/s is sufficient. This renders such a use case a covert
denial-of-service attack.

During our talk, we will also carry out a live demonstration, where we will show how this
technique works in our synthetic KVM-based environment, where a simple iperf traffic between
two VMs will be exposed to the effects our MF cache exhaustion. We will also discuss that the
restrictive access of tenants to the underlying hypervisor switches in production cloud environments
(e.g., OpenStack, Kubernetes) is also sufficient to reproduce our finding revealing a possible denial-
of-attack surface4. Furthermore, we will also present some immediate actions to overcome this
problem, e.g., increasing the number of CPU cores available for OVS, disabling MF cache, offloading
OVS datapath to a SmartNIC, using jumbo frames (whenever it is possible) to drastically reduce
the per-packet load needed to be processed by OVS.

References

[1] J. Pettit, “Accelerating Open vSwitch to “Ludicrous Speed”,” Blog post: Network
Heresy - Talses of the network reformation, https://networkheresy.com/2014/11/13/
accelerating-open-vswitch-to-ludicrous-speed/, 2014.

[2] P. Gupta and N. McKeown, “Algorithms for packet classification,” Netwrk. Mag. of Global
Internetwkg., vol. 15, no. 2, pp. 24–32, 2001.

[3] L. Csikor, C. Rothenberg, D. P. Pezaros, S. Schmid, L. Toka, and G. Rétvári, “Policy injection:
A cloud dataplane dos attack,” in Proceedings of the ACM SIGCOMM 2018 Conference on
Posters and Demos, ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp. 147–149.
[Online]. Available: http://doi.acm.org/10.1145/3234200.3234250

3Note again that it means 512 packets classified by 3 simple flow rules.
4Note that we have recently contacted the OVS developers about this attack surface and explained all steps to

reproduce such an attack

Open vSwitch 2018 Fall Conference
5th annual conference focused on
Open vSwitch and OVN

Proposal for a full talk
Levente Csikor, Gábor Rétvári

The Discrepancy of the Megaflow Cache in OVS

