ZeroDNS: Towards Better Zero Trust Security using DNS

Levente Csikor, Sriram Ramachandran, Anantharaman Lakshminarayanan
[csikor_levente,ramachandran_sriram,lux]@i2r.a-star.edu.sg
Institute for Infocomm Research (I?R), A*STAR, Singapore

ABSTRACT

Due to the increasing adoption of public cloud services, virtual-
ization, IoT, and emerging 5G technologies, enterprise network
services and users, e.g., remote workforce, can be at any physical
location. This results in that network perimeter cannot be defined
precisely anymore, making adequate access control with traditional
perimeter-based network security models (e.g., firewall, DMZ) chal-
lenging. The Zero Trust (ZT) network access framework breaks
with this traditional approach by removing the implicit trust in
the network. ZT demands strong authentication, authorization,
and encryption techniques irrespective of the physical location of
the devices. While several prominent companies have embraced
ZT (e.g., Google, Microsoft, Cloudflare), its adoption has several
obstacles.

In this paper, we focus on three problems with practical deploy-
ment of ZT. First, the DNS infrastructure, a critical entity in every
network, does not adhere to ZT principles, i.e., anyone can access
the DNS and resolve a domain name or leverage it with malicious
intent. Second, ZT’s authorization procedures require new enti-
ties in the network to authorize and verify access requests, which
can result in changes in preferred network routes (hence requir-
ing additional traffic engineering), as well as introduce potential
bottlenecks. Thirdly, ZT adds additional time cost, increasing the
time-to-first-byte (TTFB).

We propose ZERODNS, wherein the control plane of Zero Trust is
implemented using the DNS infrastructure, obviating the need for a
separate entity to issue authorization tokens. Since the control plane
is implemented using DNS, it reduces the number of round-trips
authorized clients require before accessing an enterprise resource
(e.g., web service). Furthermore, we apply ZT principles to DNS,
meaning access to DNS requires authentication, authorization, and
encrypted communication. ZERODNS uses mutual TLS for DNS
communication for authentication, and only permitted clients with
valid certificates can query domain names. We implement ZERODNS
on top of NGINX, a reverse proxy typically used as a load-balancer in
enterprise settings. We show that the additional packet processing
time in ZERODNS has a negligible impact on the overall name
resolution latency, yet it decreases TTFB.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC °22, December 5-9, 2022, Austin, TX, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9759-9/22/12...$15.00
https://doi.org/10.1145/3564625.3567968

CCS CONCEPTS

« Security and privacy — Security protocols; Domain-specific se-
curity and privacy architectures; Web application security.

ACM Reference Format:

Levente Csikor, Sriram Ramachandran, Anantharaman Lakshminarayanan.
2022. ZERODNS: Towards Better Zero Trust Security using DNS. In Annual
Computer Security Applications Conference (ACSAC °22), December 5-9, 2022,
Austin, TX, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3564625.3567968

1 INTRODUCTION

Traditional network security enforces perimeter-based access con-
trol, where accessing enterprise resources within the network perime-
ter is (usually) unconditionally granted but from outside, access
is only possible through a heavily protected single point of entry,
i.e., a firewall. This principle stems from medieval history, when
walls and moats surrounded fortresses, and the only access was
through a drawbridge, which was strongly guarded. Therefore, it
was assumed that everything physically inside the wall is safe, and
everything outside is dangerous. This network security model (just
as the medieval fortress) has a severe flaw; once the perimeter is
breached, adversaries can freely move laterally, access and leak
sensitive data.

This perimeter-based approach has not changed much over the
years; its existence has even been enforced by the IPv4 address ex-
haustion problem [1] and the inherent Network Address Translators
(NATs) and private IP addresses that were introduced to overcome
it. The concept of DMZ (Demilitarized Zone) further fostered the
perimeter-based approach, wherein the publicly available services
(e.g., a company’s website) are deployed at the perimeter, increasing
the number of components of the network that can potentially be
compromised.

However, it is becoming increasingly hard to define the physi-
cal perimeter. Due to the fast-paced evolution of network speeds
and virtualization techniques, companies adopt (public) cloud so-
lutions to benefit from low costs, high availability, and efficient
resource provisioning. From a recent study [2], the respondents
claimed that on average, only around 23% of their network will be
kept on-premise, and the rest will be outsourced to the cloud. 5G
technologies make it even harder to define a perimeter, because 5G
enables massive deployment of IoT devices (e.g., for automation,
monitoring) connected to the enterprise network from practically
anywhere without having (a company-leased/-built) infrastructure.
The recent COVID-19 pandemic has just strengthened our reliance
on remote (net)work. Several companies now allow (and sometimes
prefer) hybrid settings [2], i.e., employees can work from anywhere.
Employees can connect (with their own devices) to the enterprise
network from anywhere using VPN (Virtual Private Network) tech-
nologies. As a result, enterprises cannot assume that their internal
network is safe as there is no such clear identification of internal

https://doi.org/10.1145/3564625.3567968
https://doi.org/10.1145/3564625.3567968
https://doi.org/10.1145/3564625.3567968

Control Plane

=
=R

Threat ‘ 777777777777777 LT
Intelligence
e
e il

Figure 1: Core Zero Trust Logical Components according to
NIST [56].

Data Plane

network anymore. Moreover, thanks to the BYOD (Bring-Your-Own-
Device) models, not all connecting devices are closely monitored
and managed by the enterprise.

In 2014, Google’s BeyondCorp [63] proposed a security model
where the implicit trust in the network is removed. This whitepa-
per popularized the term Zero Trust (ZT), wherein accessing any
resource requires strong authentication of the device (e.g., via X.509
[61] certificates) and its user (e.g., via credentials), strong autho-
rization (i.e., fine-grained access control), and strong encryption
(i.e., TLS), irrespective of where the connecting device is physically
located. However, this introduces additional entities to the network.
Based on the NIST definition of ZT architecture (cf. Fig. 1), access
requests are verified in the control plane by the Policy Engine (PE),
and accordingly, the Policy Administrator (PA) generates corre-
sponding authorization tokens. Furthermore, in order to enforce
these policies in the data plane (e.g., allow, deny, or shut down
connection establishments), Policy Enforcement Points (PEPs) are
deployed (see more details in §2.3). While several prominent com-
panies have embraced this new ZT architecture (e.g., Google [63],
Microsoft [46], Cloudflare [10]), it has some deployment barriers.

In this paper, we point out and aim to address three problems
regarding the practical deployment of ZT.

1) ZT’s security measures come at a price. The ZT authoriza-
tion requires new entities in the data and the control plane
(cf. Fig. 1). As all access requests are authorized and veri-
fied by these new entities, default network routes can change
(hence requiring additional traffic engineering to maintain
balanced network utilization), and ZT’s verifying entity com-
ponent can potentially become a bottleneck and/or a victim
of a denial-of-service attack.

2) Due to the requirement to upgrade existing devices (e.g.,
client devices, servers, routers) and extend the architecture
with new ones to accommodate ZT, the overall response time
increases. In particular, the increased number of entities in-
volved in the connection establishment, the increased num-
ber of round-trips and potential bottlenecks at the control
plane, and computational overhead of additional security
measures (e.g., encryption, authentication) can significantly
affect the Time-to-First-Byte (TTFB!). These communication
overheads will hinder the adoption of ZT for latency-critical
applications.

ITTEB refers to the time between the client application initiating a connection to

a service and when it receives the first byte of relevant information. This metric is
usually used to measure the response time of a web server[21].

3) When introducing new security measures, the DNS traffic
that precedes every single connection attempt is one of the
few traffic classes left intact, i.e., the DNS (traffic), which is
unsecured by default, remains unchanged. This stems from
its critical role; it is required for virtually every single net-
working entity. Therefore, traditionally, network operators
are reluctant to interfere with DNS traffic, and it is allowed to
cross the organizational perimeters unencrypted freely, and
every component within the network (perimeter) can com-
municate with the DNS resolver. While several articles (e.g.,
[16, 29, 41]) raise security concerns about unencrypted DNS
and how malicious actors can leverage it (e.g., abusing DNS
protocol to exfiltrate data, using it for malware Command &
Control communication, DNS hijacking, distributed denial-
of-service attacks), solutions only recommend the adoption
of encrypted protocols e.g.,DNS-over-TLS (DoT [27]), DNS-
over-HTTPS (DoH [26]); not adequately addressing the ac-
cess control of this critical DNS infrastructure.

Therefore, we propose ZERODNS, an optimized realization of
the ZT architecture. In ZERODNS, to minimize the impact of (1),
the Policy Engine of the control plane components (i.e., PE and
PA) is realized in the DNS infrastructure, i.e., when a client wishes
to resolve the domain name of a service, the fine-grained autho-
rization is also done by the DNS protocol level. In particular, after
authenticating to ZERODNS (see details below), by piggybacking
the DNS responses, the client also receives its specific authorization
tokens (e.g., JSON Web Tokens [35]) for the service/enterprise re-
source? whose domain name was queried. Therefore, even with the
general inherent overhead of the new authorization components
of ZT, ZERODNS can avoid significant increase in the round-trips,
thereby reducing TTFB (and addressing (2)).

To address (3), ZERODNS enforces mutual TLS (mTLS [8, 55]) to
protect communication with DNS, ensuring that only authenticated
and permitted clients with valid certificates can query domain
names. Moreover, ZERODNS does this without the need for any
actual change to the existing DNS infrastructure (see details below).

We implement ZERODNS on top of NGINX [24], a commodity-off-
the-shelf (COTS) and publicly available software middle-box solu-
tion, originally developed as a HTTP and reverse proxy server. To
foster seamless adaptation of the ZT security model (cf. §3.2), both
traditional and ZT security components are offloaded to our NGINX
proxy (cf. §3). In particular, application-layer security mechanisms
(i-e., the TLS and mTLS endpoints) for the DNS communication,
and the fine-grained access control required by the ZT environ-
ment are implemented as NGINX plugins using NGINX JavaScipt
(NJS [50]). Using NGINX, ZERODNS not only optimizes resource
utilization and provides load-balancing features but offers a DNS
back-end server-agnostic solution. Therefore, ZERODNS does not
require any modification to the existing DNS infrastructure.

We evaluate the performance of ZERODNS in a simulated envi-
ronment to measure the latency impact of its inherent computa-
tional overhead (cf. §4). In particular, we compare the DNS response
time of of a regular client in ZERODNS to different traditional ap-
proaches (i.e., pure unencrypted DNS communications, different

2Throughout the paper, we use the words “service” and “enterprise resource”
interchangeably.

encrypted DNS communications through NGINX). We find that on
top of NGINX’s negligible off-the-shelf load-balancing overhead,
invoking NJS scripts during the packet processing (i.e., running
ZeRODNS) does not introduce significant additional overhead.

Before concluding our work in §6, we discuss possible limitations
of ZERODNS and potential future works (cf. §5).

2 BACKGROUND AND RELATED WORK
2.1 Traditional Perimeter-based Security Model

The traditional perimeter-based network security approach frag-
ments a network into smaller zones, each protected using firewalls.
Some zones might have stricter security controls than others, de-
pending on the resources within that particular zone. For instance,
in an enterprise setting, the employees’ network traffic might have
no practical limitations as they are considered trusted as being
behind a firewall and constrained to a physical location (e.g., the
company’s premises). On the other hand, services deemed riskier,
e.g., web and mail servers facing the public internet, are situated
in different zones (termed as demilitarized zones or DMZs) with
much tighter security controls, i.e., the incoming traffic is tightly
monitored, controlled, and potentially filtered. Naturally, once the
first-line-of-defense firewalls are breached, or any device inside
the trusted zones becomes compromised, lateral movement of the
adversaries, accessing and leaking sensitive data due to the lack of
adequate security measures and tight access control turn out to be
a huge threat.

Despite all these well-known facts, the perimeter-based security
approach is still prevalent. This phenomenon can be attributed to
several reasons, which, might unintentionally, have even enforced
the existence of this broken security model. For instance, as the
Internet adoption has grown in late 1990s and the publicly address-
able IP addresses appeared to be running out, the IETF defined RFC
1597; three IP network ranges reserved for private networking only,
i.e., these IP addresses are not globally routable. Therefore, enti-
ties that need Internet connection only for consuming information
but not for providing any service, could be placed behind a Net-
work Address Translator (NAT). NATs perform private-to-public
IP address translation at network boundaries, i.e., they are used
to provide Internet access for the entities behind them but do not
let any unsolicited traffic coming in from outside. This approach
not only slowed down solving the problem of the limited public
IP address space but resulted in more isolated networks. The use
(of the term) of private addresses also inherently (but erroneously)
meant more secure environments as these networks are incapable
of being connected directly to other networks, or to the public
Internet.

2.2 Why We Need a Better Model?

Nowadays, the physical location of an enterprise’s services can-
not be determined accurately, and the definition of the network
perimeter has become blurred.

Thanks to increased network speeds, virtualization techniques,
software-defined networking (SDN [40]), and network function
virtualization (NFV [18]), enterprises have adopted public cloud
solutions to benefit from low infrastructure costs, reliable and re-
dundant connections with high availability, flexibility, scalability,

and efficient resource provisioning. 5G technologies further fosters
this infrastructural expansion. For instance, massive number of
(inexpensive) IoT devices can be deployed (e.g., for automation,
monitoring, sensing, measuring) and connected to the enterprise
network from virtually anywhere without having a dedicated in-
frastructure maintained by the company. By utilizing these tech-
nology advancements, companies can easily create new offices all
around the world and federate them to the same enterprise network.
The recent COVID-19 pandemic has strengthened the reliance on
broadband connectivity and remote working. This has resulted in a
paradigm shift in working arrangements; employees can rely on
VPN technologies to connect to the enterprise network from any-
where. By further reducing the capital expenditures and allowing
BYOD models, employees can even connect to the enterprise net-
work using virtually any kind of device (that are not necessarily
monitored and managed closely by the enterprise).

Enterprises can no longer assume that whatever is inside their
network is safe because the definition of “inside” has been lost.

2.3 Whatis Zero Trust?

A network adopting the ZT security model is based on five princi-
ples [22]: (a) the network is always assumed hostile, (b) external, as
well as, internal threats perpetually exist, (c) the implicit trust in the
network imposed by the physical location of a entity is removed, (d)
every device, and user is authenticated, and authorized, while the
corresponding network traffic is encrypted, (e) policies governing
the operation of the network must be dynamically adjustable, and
calculated as many sources of information as possible.

According to NIST’s ZT definition [56], ZT architecture is com-
posed of several logical components. As depicted in Fig. 1, the Policy
Decision Point (PDP), consisting of the Policy Engine (PE) and Pol-
icy Administrator (PA), is situated in the control plane, while the
Policy Enforcement Point (PEP) is realized within the data plane.
PE is responsible for describing the enterprise policies, while PA
implements the policies defined in the PE, e.g., it generates session-
specific authorization tokens. Note, even though there is no trust
in the physical location anymore, ZT still needs the control plane
entities to operate in an environment with strict (physical) access
control.

The PEP is responsible for manifesting the policies enforced by
the control plane components in the data plane. It enables, monitors,
and terminates connections between the clients and the enterprise
resources deployed in the trust zone [56]. Note that while the PEP
is shown as one logical component in the data plane, it is usually
broken into two parts. One at the client’s device (e.g., IoT device,
employee laptop), termed as PEP-Agent, while the other is at the
service (e.g., the web portal, dashboard), termed as PEP-Gateway.
These separate entities make ZT possible without modifying the
client’s and the server application’s logic. Put differently, these
entities take care of the ZT-related communication and connection
establishment to take place transparently to the application layer.

In ZT, when a client wants to access an enterprise resource, it first
must resolve the resource’s domain name. Then, before connecting,
the PEP-Agent at the client communicates with the PDP in the
control plane to authenticate and authorize itself in order to access
the enterprise resource. Once the PDP has provided the appropriate

authorization token to the client, it can initiate the connection
to the desired enterprise resource. The counterpart of the PEP at
the enterprise resource, i.e., the PEP-Gateway, verifies® the tokens
provided by the client and grants (or denies) access accordingly.
This process ensures that the client has obtained its token in a
legitimate way, the token is indeed generated for the client (i.e., to
avoid any malicious actor to obtain and use authorization tokens
from legitimate clients by any means, like stolen credentials), and
whether it is still valid. Finally, the actual connection establishment
occurs like in a traditional network. Clearly, the increased security
measure imposed by the ZT entities will have significant impact
on the TTFB.

With ZErRoDNS, our aim is to simplify the authorization process
by implementing/offloading most of the ZT procedures (e.g., to-
ken issuance, access-control within/to the DNS infrastructure. We
implement the control plane elements on top a NGINX proxy that,
besides load-balancing the requests to the DNS back-end servers,
can also intercept each DNS response and extend it with the ap-
propriate authorization tokens (see details later in §3). Therefore,
clients’ PEP-Agents become aware of whether they are authorized
to connect to a service straight away when resolving its domain
name, thereby significantly reducing the TTFB.

Note, ZT principles and policies (e.g., maintenance of authoriza-
tion tokens) are expected to be adopted by every enterprise in a
customized manner. ZERODNS optimizes ZT’s underlying architec-
ture in a platform-agnostic manner; the actual authentication and
authorization functions (e.g., PA, PEP) are out of scope of ZERODNS.

2.4 Domain Name System

Every communication attempt to a resource requires obtaining the
appropriate IP addresses first. This process is done through the
decentralized Domain Name System (DNS, [47]) protocol. Every
domain is maintained by the authoritative name server of the enter-
prise registering it. To avoid a massive amount of devices connected
to the Internet overloading a single domain’s authoritative server be-
fore visiting, DNS employs a hierarchical structure. In this structure,
recursive resolvers* (typically run by big companies like Google) act
as high-performing global “phone books” providing domain name
resolution services (for everyone) with all domain records queried
and cached so far. Similarly, every client also caches resolved do-
main data in its local stub resolver (e.g., at the operating system, in
the web browser) to avoid additional DNS resolution processes for
the same recently visited domains. Due to the dynamically chang-
ing nature of the Internet, however, every resource record has a
relatively short (typically, an hour- to a day-long) expiration time
(i.e., time to leave or TTL) for which the record is considered valid,
hence cached. Once the TTL of a record expires, the domain has to
be resolved again.

A client can be provided with several (recursive) DNS resolvers;
it will query a domain according to the resolvers’ priorities until
the domain is resolved. If the domain cannot be resolved, the client

3The verification process is implementation specific. Adequate verification information
can be self-contained in the authorization token (e.g., with signed JWT token) or the
PEP-Gateway might double-check the validity of the tokens with the PDP (e.g., via
Online Certificate Status Protocol [25, 57]

4Note, an authoritative name server acts as a recursive name server for its clients
requesting domains out of the authoritative domain.

receives an NXDOMAIN error (i.e., a non-existent domain as a reply);
hence, it will not be able to connect to the resource using its domain
name.

Since almost every resource is identified by domain names (in-
stead of hard-to-remember IP addresses), DNS has become a critical
infrastructure since its inception. However, it has been a plain-
text protocol for all practical purposes [13], allowing malicious
actors to track user activities (e.g., [37]), tamper with DNS (e.g., [9]),
or even block certain queries for censoring purposes (e.g., in [7]).
While some recent privacy-enhancing technologies (e.g., DNS-over-
TLS [27], DNS-over-HTTPS [26]) have started to penetrate particu-
lar DNS ecosystems, they only provide encrypted communication.
Fine-grained access control of DNS, similarly to other resources
in ZT (i.e., who can resolve which domains), is still missing. With
ZERODNS, we make a step towards filling this gap.

3 ZERODNS ARCHITECTURE

Our proposed architecture is shown in (the top-most part of) Fig. 2.
On the left-hand side, the existing DNS infrastructure is shown.
According to the IANA considerations [28], a primary and a sec-
ondary DNS server are deployed. Both are realized (and configured)
by the stock BIND9 DNS implementation [31]. These DNS back-
end servers are the authoritative name servers of the enterprise’s
network.

In the middle, the ZERODNS plugin is shown, which is imple-
mented on top of NGINX reverse proxy using NJS, an NGINX specific
Javascript engine [50]. ZERODNS can be easily added to existing
infrastructures already deploying NGINX proxies for other purposes,
e.g., load-balancing, scalability, traffic engineering, logging, TLS
offloading/termination [24]°.

The reverse proxy is configured to provide load-balancing capa-
bilities for the DNS servers, i.e., DNS queries are evenly distributed
among the back-end servers by relying on NGINX’s built-in load-
balancing algorithm. It also offers secure TLS tunnel endpoints for
connecting clients (refer to the right-hand side of the figure). In
particular, it provides standard DoT and DoH endpoints. For the
latter one, a translation service is utilized [6] to “convert” DNS mes-
sages arriving via HTTP to traditional DNS wire format and vice
versa. Furthermore, these endpoints are protected using mutual
TLS, i.e., only authorized clients with appropriate X.509 certificates
can connect to the reverse proxy to query a domain.

By these features, ZERODNS provides and end-to-end encryp-
tion between the clients and the DNS proxy. Note that terminating
(m)TLS sessions at the reverse proxy is a typical practice when
deploying NGINX, especially when deployed for load-balancing
purposes. Therefore, NGINX reverse proxy enables swift and trans-
parent scaling-out of DNS back-end servers without dealing with
multiple certificates, TLS session handling, etc. It also means that
the back-end servers are configured to accept queries from the
proxy only; Furthermore, since the type of communication between
the NGINX proxy and the DNS back-end servers remains intact,
ZERODNS fosters brownfield deployment. To avoid imposing any
security concern (e.g., man-in-the-middle attack, DNS poisoning),

5In environments without pre-existing NGINX modules, it can be easily installed (even
in a Docker container [51]) and configured within a couple of steps [17].

NS1
172.30.1.2

Policy Admin

zone transfer

In .lﬂ
(_%_ ; Load balancer

v w :
NS2 ; mﬂ

1723013 | :
BIND INGINX

Authoritative-only servers for one domain:
mtls-dns.com A 172.30.1.10

| .| Define policies and provide tokens
[)

ZeroDNS main module ! https://172.30.1.4

ldns-query

Policy Engine

DNS o/ HTTP)

DNS wire format

.......... TFLSHmILS - oooioo Tty
NGINX reverse proxy services with (m)TLS offloading running at 172.30.1.4

<

DNS-ovei-HTTPS entry

DNS-ov:er-TLS entry

Certificate checker

Clientl with certl

;

Client2 with cert2

[

P

Client3 with cert3
but NO AUTH TOKEN

Client4 with cert4
but DENIED

Client5 without cert

DNS msgs. w/ Clientl

DNS msgs. w/ Client2

DNS msgs. w/ Client3

DNS msgs. w/ Client4

DNS msgs. w/ Client5

DNS query: mtls-dns.com

DNS resp: A 172.30.1.10

DNS query: mtls-dns.com

DNS resp: A 172.30.1.10

DNS query: mtls-dns.com

DNS resp: A 172.30.1.10

DNS query: mtls-dns.com

DNS resp.: NXDOMAIN

DNS query: mtls-dns.com

'
H DNS resp: TXT "token_1" DNS resp: TXT "token_2
'

Secure network connection with mTLS

Figure 2: Architecture

ZERODNS runs physically close (i.e., directly connected to) or on
the primary back-end server.

The core of ZERODNS is the main module denoted in the green
box. The steps are the following.

1. The requesting client initiates a TLS connection towards
ZERODNS and authenticates itself via its X.509 certificate.

2. Then, the PE component of the main module fetches the
corresponding policy, optionally caches it for future use, and
in parallel, forwards the DNS query towards one of the DNS
back-end servers to avoid any significant packet buffering
at the proxy side, i.e., to avoid keeping the DNS query in the
buffer until the policy lookup is done.

3. Once the corresponding DNS response from the DNS back-
end servers is received by the proxy, the PE component of
the main module evaluates whether the requester, besides
possessing the proper client certificate, is granted permission
to resolve the domain name (of a requested service).

4. After successful authorization, the DNS response is appended
with the client-specific authorization tokens and sent to the
client.

5. The client receives its custom authorization tokens straight-
away after resolving the requested service’s IP address.

Note that the authorization tokens for each client are generated
and constantly updated by the PE and PA. The DNS proxy has
access to this list of tokens wherein it can look up whether the
client querying a given service’s domain is authorized to visit.

Time-To-Live (TTL): Since the clients have to obtain the IP ad-
dress of the requested service via DNS before every connection
attempt, piggybacking DNS can reduce the TTFB between a client
and a service. However, DNS records typically last longer than
authorization tokens, i.e., authorization tokens may expire earlier
than the DNS records®. If the DNS TTL is longer than the ZT autho-
rization token’s TTL, clients will have an IP address in their caches
(i.e., in their stub resolver), but the authorization tokens would have
already expired. In ZERODNS, the DNS records’ TTL is set (by the
proxy when processing the corresponding DNS reply) to the lowest
TTL value of the authorization tokens. This way, the clients have to
query the given service’s domain IP address via DNS every time the
authorization tokens expire. Recall, this does not need any change
to the DNS back-end servers or their fundamental logic; the TTL
values are updated by the DNS proxy.

Authorization token TTL is set based on the ZT access policy,
which is context dependent. If an authorization token expires, the
client must obtain a fresh token (if it still desires access to the en-
terprise resource). Since we use ZERODNS for both DNS resolution
and as the policy decision engine, setting the DNS TTL to the ZT
authorization token TTL will not impose overall additional commu-
nication costs. Naturally, however, the ZT-related communication
now introduces additional overhead to the DNS infrastructure yet,

®The typical default TTL value for a DNS record is 12 hours or 24 hours [30], while
authorization tokens in ZT last for minutes or even less for more critical resources

due to the load-balancing feature of NGINX, seamless scaling-out
of the DNS back-end servers is straightforward.

Note, however, TTL values in the DNS responses are sometimes
not honored by client applications, e.g., browsers might cache DNS
responses at least for hard-coded timeframe, such as 15 minutes [48].
When such applications are required to access enterprise resources
in a ZT environment using ZERODNS, authorization tokens should
either be set accordingly if acceptable (i.e., greater than or equal to
this value), or seamless fallback to traditional ZT-based authentica-
tion methods should be provided.

3.1 Workflow

We give an overview of the steps taken when a client connects to
a service available at a hypothetical domain, https://www.mtls-
dns.com. There are different client types, shown at the bottom of
Fig. 2.

1. Consider Client1, which has a client certificate issued and
signed by the organization. Using one of the secured DNS
end-points (i.e., DoT or DoH), Client1 first sends a DNS
query to resolve the corresponding service’s domain’s IP
address.

2. After the client has verified the DNS proxy by the DNS
proxy’s certificate (signed by a trusted authority) and au-
thenticated itself using its client certificate, the DNS proxy
forwards the query to one of the DNS back-end servers.

3. While the DNS proxy awaits the response from the DNS
back-end server, the proxy checks the provided policy (i.e.,
the list of tokens, access rights of the client) to see whether
the client is allowed to query the domain name and whether
there is any authorization token available for the querying
client. In our preliminary implementation, for brevity, the
list of tokens and the access policies are stored in a JSON
file, which is read and loaded by the DNS proxy’.

4. If Client1 is authorized to use the service at https://www.
mtls-dns. com, then the client-specific token, token_1, is ap-
pended to the DNS response ANSWER section as a TXT record®.
The case for Client2 depicts a similar picture except that
it receives a different token, token_2. Suppose, for a client,
there is no authorization token?, e.g., in the case of Client3.
In that case, the corresponding DNS response remains intact,
hence the client only receives the original DNS response
with the queried relevant information (e.g., A record with
the IPv4 address of the service). Therefore, the client will
need additional authentication and authorization to access
the request service.

5. With , it has the correct certificate, however the
DNS reply is denied due to finer-grained access policies
defined in the PE, ie., is not authorized or tem-
porarily blocked. In particular, when the response from one
of the DNS back-end servers is received (with the correct A

"Thus, when the tokens are refreshed, an explicit notification is needed to be sent to
the DNS proxy to reload the JSON file.

8Note, DNS has several other sections (e.g., auth. records, additional records), and
possibilities to append the authorization tokens to (e.g., EDNS). For simplicity, we
relied on the ANSWER section and TXT type.

9 Assume a new service is under development, and to avoid interfering with the actual
running infrastructure, access control is merely handled by the service itself.

record), the proxy alters it, and replace the ANSWER section
with NXDOMAIN. Therefore, will not be able to even
connect to the service because it does not have the correct
IP address.

6. Last but not least, in the case of Client5, since it has no ap-
propriate client certificate, its request is denied straightaway
as the mutual authentication fails.

3.2 Benefits of ZERODNS

Next, we discuss on several benefits ZERODNS provides.
Minimal modification to existing network infrastructure: In
ZERODNS, the zero trust control plane components, e.g., PA, PE,
are introduced as plug-ins to the existing DNS infrastructure. The
DNS communication, which precedes every connection, is used
to piggyback client-specific authorization tokens. Thus, clients do
not need to make a separate request to the PA to obtain a ZT
authorization token. This also eliminates the need to have the PA
as an additional stand-alone server.

By building on top of the ubiquitously used NGINX reverse proxy
(cf. §3), not only are the original DNS services preserved, but also
no additional change is required at the protocol level (i.e., ZERODNS
does not require any new protocol to be deployed).

Reduced ZT bottleneck: Our ZERODNS plugin acts as a reverse
DNS proxy. In particular, the reverse proxy behaves as an interme-
diate server that, by intercepting client requests, can forward them
to the appropriate back-end servers (see implementation details
in §3). Since, every domain requires at least two authoritative name
servers according to the IANA technical requirements[28], a re-
verse proxy is useful to balance the load across these DNS back-end
servers.

By utilizing the load-balancing capabilities of NGINX in ZERODNS,
we can optimize resource utilization, maximize throughput, reduce
latency, defend against DoS attacks, and provide transparent fall-
back mechanisms for the DNS back-end [17, 24, 38].

Being true to ZT: In ZT, authentication and authorization are
critical building blocks. However, existing DNS implements none
of them. Anyone making a request, receives the IP address of the
resolved domain name.

In ZERODNS, requesting clients can only resolve domain names if
the clients authenticate themselves. X.509 certificates are issued and
deployed to each client enterprise-wide, and connections to the DNS
proxy are protected using mTLS. Traditional ZT requires devices to
be authenticated, so we use the same identity management. Access
control is defined at the DNS proxy to check whether a client is
allowed to resolve the domain name of a particular service.

Offloading TLS processing: Besides enforcing strong authen-
tication and authorization, ZT requires each communication to be
encrypted. While the security and the privacy aspects of the Do-
main Name System have received significant attention lately [11, 15,
26, 27, 53, 54], encrypted DNS request-response, especially within
an enterprise setting, is not yet a reality. Aside from some disputed
trade-offs between increased privacy and efficient network moni-
toring [33], technically adopting encryption to the DNS traffic can
be challenging in an existing infrastructure. For instance, while
BIND [31] and Unbound [52] support DNS-over-TLS (DoT, [27]) since
2018 [3, 32], Simple DNS plus, a resolving and authoritative DNS

server for Windows-based systems, supports DoT only since the
end of 2021 [34]. Furthermore, if a network administrator prefers
DNS-over-HTTPS (DoH, [26]), the number of compatible native
implementation choices reduces even more.

Our DNS proxy implements typical application-level encryption
using TLS, thereby offloading such security-related functions to
the proxy and leaving the existing DNS infrastructure intact.

DNS server implementation-agnostic: Besides preserving
existing infrastructure elements, it is beneficial if critical software
components, e.g., the DNS back-end server, remain unchanged.

By offloading the TLS processing to our DNS proxy where all
ZT components are realized, the existing, potential non-encrypted,
DNS back-end servers do not need any upgrade; they can still op-
erate according to the original infrastructure. Furthermore, since
essential security mechanisms required by DoT or even DoH are
provided by the DNS proxy, ZERODNS is entirely DNS back-end
server-agnostic. In other words, ZERODNS only requires to have
either encrypted (e.g., DoT) or traditional non-encrypted (i.e., DNS-
over-UDP) access to the (authoritative) domain name servers irre-
spective of any implementation- and platform-specific details.

Piggybacking existing traffic: Introducing new servers with
new protocols can quickly increase an enterprise’s overall costs.
In particular, migrating a traditional network into a ZT and in-
troducing new entities to the network infrastructure (i.e., PA, PE,
PEP), will cause additional network administration challenges, e.g.,
different access control lists, intra-domain routing changes, traffic
re-directions. Furthermore, a new service (running on a new phys-
ical machine) increases the number of entities that can fail or be
compromised, which eventually further increases the maintenance
and management costs.

In ZERODNS, by utilizing and extending (existing) NGINX proxy
functions, we do not introduce any new physical or logical control
plane entity, hence no additional network routing management is
required. Furthermore, by piggybacking DNS traffic, network routes
do not require any alteration, and troubleshooting (i.e., finding a
root cause of a networking-related failure w.r.t. ZERODNS) does
not impose much additional efforts either. ZERODNS, however, just
like any ZT realization, requires the PEPs to assure the secure and
authenticated connections (cf. §2.3).

Reduced Time-to-First-Byte (TTFB): TTFB refers to the time
between the client application initiating a connection to a requested
service and when the client receives the first byte of relevant infor-
mation. Every connection starts with a DNS lookup, i.e., with the
process of resolving the service’s domain name. This connection im-
poses at least one RTT (Round-Trip Time) if made over unencrypted
UDP channels, and a few more RTTs with increased reliability (e.g.,

over TCP) and additional security measures (e.g., over TLS). Let

tDN S
UDP ;]) ;]
unencrypted DNS communication, i.e., via DNS-over-UDP. Since

in ZT environment, all services must rely on strong authentication,
DNS .DNS DNS :

let, furtherrr}ore, trep s tTLS. R apd LoTLS denote the elapsed time

when domain name resolution is over TCP, over TLS, and subse-

quently, over mutual TLS (proposed by our ZERODNS architecture),

respectively!?.

denote the time required for domain name resolutions via

19Njote, the latter ones inherently requires all previous ones, e.g., mTLS connection
requires TLS on top of TCP.

Traditionally, after resolving the domain name, the client initi-
ates a TCP handshake to the service’s resolved IP address, then a
TLS handshake takes place to kick off a secure communication ses-
sion. Additionally, mutual TLS might be enforced by the requested
service. This multi-step connection establishment to the service is
necessary regardless of whether the security model is based on ZT
or not. Therefore, let us collectively refer to those steps as tf‘irL”ice.

In a traditional network where only the content-hosting servers
are protected and authenticated by TLS (and optionally by mTLS),
the TTFB can be summarized as follows:

TTFBraq. = thpp + ther2ic (1)

In the case of secured DNS communication according to recent
standards [26, 27] and best practices [5, 14, 20], the above equation
changes as follows:

_ DNS [.DNS Service
TTFByraa. = trep +irps” +tarr @)

In a zero trust environment, accessing any service is expected to
require strong authentication, as well as authorization through the
new control plane components (i.e., PA, PE), therefore, clients have
to make additional round-trips increasing overall TTFB as follows:

DNS DNS ZTCP ZTCP ZTCP

_ ;DNS
TTFByt = trcp + 115 + byris * iTcp *1TLs +lnTis™
Service
G, > G

where ZTCP refers to Zero Trust Control Plane.

In ZERODNS, however, by piggybacking the DNS responses with
the ZT authorization tokens, TTFB can be reduced close to the TTFB
in traditional networks that have much looser security measures in
general (i.e,, to TTFB;y4q):

_ ,DNS DNS DNS Service
tZxroDNS = trep * irps +tpris * taLL 4)

Note, if traditional networks advocates strong authentication via
mTLS for DNS communication, the TTFB of the ZT architecture
via ZERODNS is practically the same. For comprehensive sequence
charts of the above-mentioned steps, refer to Fig. 5 and Fig. 6 in the
Appendix (cf. §6).

4 EVALUATION

ZERODNS provides Zero Trust access control leveraging the DNS
infrastructure, while reducing connection establishment time by
reducing the total number of round-trips required. However, the
processing time at the proxy might offset the gains. In this section,
through experiments in a simulated environments, we show that
this processing time does not introduce additional significant time
costs.

4.1 Methodology

ZERODNS adds mTLS to DNS and uses the DNS for certain ZT
control plane functions. In our measurements, we focus on the
round-trip times of DNS and investigate to what extent ZERODNS
affects the overall DNS response times.

We simulate one client, which uses the kdig [39] command-line
utility to resolve a domain name and we rely on the same tool’s re-
ported response time. Note, due to the nature of the command-line
application, every time it is issued, the (m)TLS connection is estab-
lished from scratch and the connect torn down once the response

is received. This helps us to measure the worst-case baseline indi-
cators; any optimization, e.g., TLS session tickets [42], 0-RTT [58],
would only affect the performance positively. The measurements
are carried out in a lightweight containerized environment, where
each entity (two stock authoritative BIND9 name servers!!, one
stock NGINX proxy!? with the ZERODNS extensions, and one regular
Debian Linux-based client!®) runs in a separate Docker container
and the underlying network substrate is provisioned by the de-
fault Linux networking stack (i.e., virtual Ethernet pairs [45], Linux
bridge utilities [43], iptables [44]) Docker relies on. This container-
ized overlay network runs on top of a Ubuntu 20.04 LTS operating
system, running on a relatively old Lenovo x240 Laptop with Intel
Core i7-4600U CPU with 8GB of memory.

We differentiate several use cases based on the protocols relied
on and the additional processing time they incur. UDP w/o proxy
and TCP w/o proxy imply that the client directly sends the queries
to one of the DNS back-end servers using UDP and TCP protocol,
respectively. The protocols with the notion w/proxy (no code
exec) represent response times using the given protocol when
queries are sent to the NGINX reverse proxy; however, no code exe-
cution is involved. This is a typical scenario when the reverse proxy
is used for load-balancing purposes only. In contrast, the protocols
(e.g., UDP, TCP, TLS) denoted solely by w/proxy mean that the
proxy also executes Javascript instructions for every query and
response even if no packet mangling occurred, i.e., when queries
and responses are parsed. Since the authorization tokens are based
on the clients’ certificates, we differentiate three different use cases
for the mTLS protocol. Similar to previous cases, mTLS (no code
exec) shows the response times when the proxy provides only a
load-balancing feature on top of mutual TLS communication. In
both mTLS (no tokens) and mTLS (extend DNS), Javascript in-
structions are executed for every query and response. However,
the DNS response packets are extended in the former case, as the
connecting client will receive no authorization token(s). The latter
case (nTLS (extend DNS)) represents the full-fledged scenario in
ZERODNS, where clients authenticate themselves via mutual TLS
and, in response, the proxy extends the relevant DNS queries with
the client-specific authorization token(s).

Our experiments measure the absolute and relative response
times for 100 consecutive DNS queries sent from the client using
all different protocols. For relative comparisons, if not stated other-
wise, we take the average response time of the 100 measurement
points. The y axes show the measured/averaged response times in
milliseconds.

4.2 Baseline Measurements

To measure additional latency imposed by the proxy, we need base-
line measurements. The baseline measurement represents the tra-
ditional use case when the DNS (back-end) servers are directly
addressed (i.e., there is no additional proxy), and there is no commu-
nication overhead either (i.e., UDP w/o proxy). Then, we compare
this baseline to the response times of other protocols in the order

Uhttps://hub.docker.com/r/internetsystemsconsortium/bind9
2https://hub.docker.com/_/nginx
Bhttps://hub.docker.com/r/cslev/debian_networking

——— UDP w/o proxy

,,,,,,, TCP w/o proxy TLS w/ proxy (no code exec)

- == UDP w/ proxy (no code exec) - TLS w/ proxy
——— TCP w/ proxy (no code exec) ——— mTLS w/ proxy (no code exec)
mTLS w/ proxy (no token)

—— mTLS w/ proxy (extend DNS)

.......... UDP w/ proxy
—— TCP w/ proxy

2 T g

Response time [ms]

Query ID Query ID

(a) With and without proxy when (b) With proxy and encryption.

no encryption is used.

Figure 3: Absolute responses times for 100 queries using different
protocols. Note the different scales of the y axes.

of overhead they “naturally” impose according to their additional
complexity (cf. §4.1).

The results are depicted in Fig. 3. We observe that while TCP
introduces at least two more round-trips due to the TCP handshake
(i.e., TCP SYN/SYN-ACK/ACK), on average, the use of TCP does not
introduce significant overhead to the response time compared to us-
ing UDP (~ 0.15ms), providing an average response time of 0.175ms.
When we introduce the reverse proxy, the response times increase
up to ~ 0.433ms with UDP, and ~ 0.5ms with TCP, respectively.
When the proxy processes each packet, i.e., when the Javascript
code is executed every time a query or response is forwarded, on
average, the response time with UDP increases to ~ 1.1ms, and
with TCP to ~ 1.2ms.

When it comes to encryption, we observe an unexpected phe-
nomenon in the response times measured. The average response
time with TLS w/ proxy (no code exec) is lower (0.419ms) than
the same scenario without encryption, i.e., TCP w/proxy (no code
exec). When, in addition to the TLS encryption, the proxy also pro-
cesses the DNS packets (i.e., TLS w/ proxy) the average response
time increases to 1.21ms; slightly above the similar case without
encryption, i.e., above the response time measured in the case of
TCP w/ proxy. While on average, the response time is higher with
mutual TLS authentication, compared to sole TLS authentication,
the increase is negligible (0.419ms of TLS compared to 0.421ms of
mTLS).

We consider the full-fledged scenarios, i.e., when using mTLS
connection and code execution at the proxy side. In particular, when
the connecting client is not (directly) authorized to the requested
service, i.e., no tokens are added to the DNS response, the average
response time becomes 1.116ms. On the other hand, when DNS
responses need to be extended with authorization information, the
average response time turns out to be 1.72ms.

https://hub.docker.com/r/internetsystemsconsortium/bind9
https://hub.docker.com/_/nginx
https://hub.docker.com/r/cslev/debian_networking

0o tep wo proxy B uop w proxy (no code exec)

g8 uop w proxy o tcp w proxy (no code exec)
Ue Tcp w/ proxy {0 TLS w/ proxy (no code exec)
E|E| TLS w/ proxy DD mTLS w/ proxy (no code exec)
mTLS w/ proxy (no token) D[I mTLS w/ proxy (extend DNS)
1.57
— [
E 1.5 *x ¥ |
T X ¥
iz Xx X
S * %
& B X X
o 1+ 0.95 *x x|
: = .+
‘: — * X
1z — X X
é — * X
e X X
§ 0.5 —— *x % |
& = * %
g = * %
% X X
X X
0

Different protocols and operations

Figure 4: The average response times of all settings relative to the
baseline.

We can conclude that the greatest impact on the response time,
as expected, is when the reverse proxy has to process every DNS
packet. However, the whole domain name resolution with the DNS
response packet extension with authorization tokens requires, on
average, no more than 2ms.

4.3 Relative Response Times

Since the absolute response times heavily rely on the existing net-
work services, comparing the response times of all protocols rel-
ative to the baseline scenario can provide better, infrastructure-
independent comparison. To this end, the average response time
of the 100 queries for UDP w/o proxy, i.e., 0.151ms, is compared to
the average response times of all other protocols. Therefore, Fig. 4
shows the deviance in the response time of the different protocols
(i-e., the additional latency the other protocols impose).

We can observe that, on average, the introduction of the proxy
element imposes around a 0.26 — 0.36ms penalty on the response
time. The results also indicate that whether the proxy provides no
(UDP w/ proxy (no code exec), TCP w/ proxy (no code
exec)), TLS (TLS w/ proxy (no code exec)), or mTLS (mTLS
w/ proxy (no code exec)) security measures, it does not play a
significant role; interestingly, the average indicators turn out to be
slightly better for the encrypted cases!#. Furthermore, one can see
that when the proxy load-balances the traffic and processes each
DNS packet at the same time, the response times for all protocols
increase, on average, by about 1ms. When the DNS responses re-
quire on-the-fly modifications and extensions with client-specific

4When a fine-grained measurement is done in an environment completely running
within one laptop only, such small (unexpected) deviance often occurs and is attributed
to measurement error.

authorization tokens, the average response time further increases
by 0.5ms.

We can conclude that while introducing the DNS proxy element
naturally imposes additional latency, it only adds at most ~ 1.5ms
latency to the average DNS response time for the client. Many enter-
prises already deploy (reverse) proxies for load-balancing purposes.
Therefore, above-mentioned factor may further decrease by the
average response time of the w/ proxy (no code exec) use cases
resulting in an average additional latency of the ZERODNS archi-
tecture of only ~ 1.2ms. Finally, since in ZERODNS, client-specific
authorization tokens are piggybacked in the DNS response, the
additional latency will be mitigated by having significantly lesser
number of additional round-trips.

5 DISCUSSION AND FUTURE WORK

In this section, we discuss further challenges and considerations
for future work regarding ZERODNS.

Client and Server Applications: In the ZT security model, the
policies are enforced by the Policy Enforcement Points (PEP), de-
ployed in the data plane (cf. §2.3). Practically speaking, these PEP
points are deployed on the client systems (PEP-Agent), as well as on
the servers (PEP-Gateway). These logical entities are responsible to
carry out the authorization required by ZT. This provides a seam-
less migration to ZT as neither the client nor the server application
requires any modification to their business logic. In ZERODNS, we
do not change the data plane and consequently, the functionality
of the PEPs. ZERODNS still relies on the existence of the PEPs; it
only advocates the authentication and authorization to be done
on the DNS protocol layer at the same time as the DNS query and
response.

Multiple services behind the same IP: Different services reach-
able at different endpoints (e.g., REST API endpoints) may have
different authorization tokens according to different access policies.
However, they might still run behind the same IP address. If for one
domain name, the DNS proxy supplies all tokens for all services for
a given client, the DNS response might become too big (in packet
size), resulting in an undesired DNS packet fragmentation. While
fragmentation does not impose any significant security issues or
processing overhead at the DNS proxy, DNS fragments should be
avoided. Therefore, it is worth considering whether there is any
straightforward way to provide extra information in the DNS query
to always receive only the relevant authorization tokens to a given
(set of) endpoint. EDNSO extensions [62] may suit this demand.
In EDNS, one optional resource record (termed as OPT RR) can
be added to the request [62]. EDNS extensions have already been
used for several purposes, e.g., specifying the UDP DNS payload
size of the requester to avoid packet fragmentation, EDNS Client
Subnet [12] (proposed in 2011) option used to optimize routing
decisions when queries sent to a distant publicly available recursive
DNS resolvers. Since the OPT RR supports a variable set of options
expressed as {attribute, value} pairs [62], the given endpoint(s)
in ZERODNS could be encoded into this field and the DNS proxy
can be amended to append authorization tokens accordingly.
Tokens in TXT records: We use the DNS TXT records to deliver the
authorization tokens. While the maximum length of the DNS TXT
records is 255 characters, typical authorization tokens (e.g., JWT

tokens) can exceed this length. In ZERODNS, every token starts with
an easily identifiable prefix as a (tokentype: : :webservice—>)
tuple. When the total length exceeds (255—prefixjengsn) characters,
it is broken into multiple DNS TXT records (cf. Listing 1 in the
Appendix). To ease parsing at the client-side, these subsequent
segments of the same token do not have the prefix anymore. Hence,
the client application can easily identify the start and the end of
the authorization tokens.

Authoritative responses: By adding cryptographic signatures to
DNS records, DNSSEC [64] can be used by clients to verify that a
response comes from its authoritative name server and has not been
tampered with. Clearly, modifying such responses in ZERODNS (by
adding tokens and manipulating the TTL) would result in failed
signature verification. However, in ZERODNS, the responses do
not require the existence of DNSSEC. The security extensions in
ZERODNS (e.g., TLS endpoints) adequately verify the authenticity
of the DNS server, i.e., the NGINX proxy, and provide end-to-end
encryption to the communication channel. Moreover, the clients
query the authoritative name servers, i.e., the NGINX proxy, directly,
having no man-in-the-middle (e.g., a recursive resolver) involved.
On the other hand, if a malicious actor would try to divert the
DNS queries to a rouge server, due to the (lack of) the correct TLS
certificate, the client will abort and the resolution will fail.

Note, for non-enterprise domains, ZERODNS is not responsible
for any ZT-related measures (i.e., authorization tokens). Hence,
those queries can either be handled as usual, i.e., ZERODNS acting
as a recursive resolver (cf. §2.4), or clients can rely on additional
third-party recursive resolvers for the same purpose.

Security consideration for shared IP addresses: Client systems
do not have to rely on the DNS server (preset via the network ad-
ministrator) for domain name resolution. They can be manually
configured, and hostnames can be matched with IP addresses man-
ually (e.g., /etc/hosts file in Linux systems). In general, services
are usually deployed behind a gateway that offers several further
services (e.g., DDoS protection, load-balancing). Such services can
also provide an API gateway (e.g., Apigee [23], Kong [19]) that can
process authorization tokens from the header of the requests. In
ZERODNS, even if the IP addresses are obtained from other sources
than the ZERODNS proxy, without the authorization tokens no
client can connect to the corresponding service.

Bypassing the proxy: By definition, the proxy can be bypassed.
For instance, in case of Fig. 2, if figures out the DNS back-
end servers IP addresses (e.g., 172.30.1. 3), modifies its network
settings, it can bypass ZERODNS proxy (located at 172.30.1.4)
and directly query the back-end servers. To avoid this, the DNS
back-end servers’ configuration must be modified to only allow
queries from the ZERODNS proxy’s IP address.

Performance: If EDNS can be used to indicate which particular
service(s) a client wishes to connect to, the DNS responses could
be assured to not go beyond the allowed payload size limit, thereby
avoiding more than one response packet received by the client. In
certain circumstances (e.g., where not many services are deployed
behind one IP address), receiving the authorization tokens for all
of the services can improve the performance as no further query is
needed for the other services.

Reverse proxy and NGINX: As mentioned in §3, ZERODNS is imple-
mented on top of NGINX reverse proxy. Originally, NGINX was devel-
oped as a web server in 2004 to resolve the so-called performance-
related C10K problem [36]. Since then, due its high performance,
NGINX has evolved to be a reverse proxy, HTTP cache, and load
balancer and it is one of the most popular web servers among
high-traffic websites [38]. In addition to its superior performance,
ZERODNS uses NGINX because its Application Programming Inter-
face (API) allows developers to extend its functionality via NJS, a
JavaScript engine specifically tailored to NGINX.

However, NGINX is not the only way to implement ZERODNS.
HAProxy [4] is another free versatile reverse proxy, offering high
availability, load-balancing and proxying features. It support Lua
scripting language to extend its basic packet processing capabili-
ties [49], hence being another candidate to materialize ZERODNS.

Similarly, Traefik [59] is another reverse proxy implementation
that can automatically discover the correct configuration for the
running services and supports every major cluster technology. From
the perspective of ZERODNS, Traefik can be extended with plugins
written in Go language [60].

6 CONCLUSION

Zero Trust (ZT) security framework addresses many long-standing
security issues of traditional perimeter-based network security.
ZT removes the implicit trust in the network and requires strong
authentication, authorization, and encryption for each connection,
irrespective of the physical location of the entities.

In this paper, we address three problems of ZT. First problem is
that the DNS infrastructure, which is the critical entity in every
network, does not adhere to the ZT principles, i.e., anyone can
access the DNS and get a response. Second problem is that ZT’s
authorization procedures require new entities in the data and the
control plane to authorize and verify access requests. These new
entities can result in changes in preferred network routes (hence
requiring additional traffic engineering), as well as introduce po-
tential bottlenecks. Third problem is that ZT adds additional time
cost, increasing the time to first byte (TTFB).

We have proposed ZERODNS, a better realization of ZT. In Zk-
RODNS, the authorization and authentication entities are realized
and enforced within the DNS infrastructure. This also reduces the
required number of round-trips, potentially decreasing TTFB. To in-
clude the robust security measures of ZT to DNS, ZERODNS enforces
mutual TLS protocol for the DNS communication for authentica-
tion, and ensures that only permitted clients with valid certificates
can query domain names. We have implemented ZERODNS on top
of NGINX proxy, typically used as a load-balancer in enterprise
settings, providing a DNS back-end server-agnostic solution. We
have evaluated the impact of ZERODNS on the response times in
a simulated environment, and we have found that the impact is
minimal.

REFERENCES

(1]
(2]

3

=

(5]

(6]

(7]

[12

[13]

[14]

[15

[16]

[17]

[18

[19]

[20

[21

[22]
[23]

[24

[25]

[26]

A10 Networks. [Accessed: Sep 2022]. What is IPv4 Exhaustion? Online Glossary
of Terms, https://www.alOnetworks.com/glossary/what-is-ipv4-exhaustion/.
A10 Networks. Jun 2022 [Accessed: Sep 2022]. Enterprise Perspectives
2022: Zero Trust, Cloud, and Remote Work Drive Digital Resiliency. Enter-
prise report, https://links.al0networks.com/NDE3LUdVQi05OTUAAAGE _
zvj7YLRpVIB8 AdLIqEcel T3UZEVIXclrkm6DG8ii00cR609-
QZ5G5TQRu29igpHROX8IwM=.

Daniel Aleksandersen. Jun 2018 [Accessed: Sep 2022]. Actually secure DNS over
TLS in Unbound. Ctrlblog, https://www.ctrlblog/entry/unbound-tls-forwarding.
html.

Mitchell Anicas. May 2014 [Acceessed: May 2022]. An Introduc-
tion to HAProxy and Load Balancing Concepts. Digital Ocean Tu-
torial, https://www.digitalocean.com/community/tutorials/an-introduction-to-
haproxy-and-load-balancing-concepts.

Jim Black. Jan 2022 [Accessed: Sep 2022]. We Need to Encrypt DNS: Here’s An-
other Compelling Reason Why. Akamai Blogpost, https://www.akamai.com/blog/
security/we-need-to-encrypt-dns-heres-another-compelling-reason-why.
Mark Boddington. Feb 2022 [Accessed: Sep 2022]. Using NGINX as a DoT or
DoH Gateway. NGINX blog post, https://www.nginx.com/blog/using-nginx-as-
dot-doh-gateway/.

Heather Brown, Emily Guskin, and Amy Mitchell. Nov 2012 [Accessed: Oct
2020]. The Role of Social Media in the Arab Uprisings. Pew Research Center
Journalism & Media, https://www.journalism.org/2012/11/28/role-social-media-
arab-uprisings/.

Cloudflare. [Accessed: Jun 2022]. What is mutual TLS (mTLS)? Online, https://
www.cloudflare.com/en-gb/learning/access-management/what-is-mutual-tls/.
Cloudflare. [Accessed: Oct 2020]. What is DNS cache poisoning? | DNS spoofing.
[Online], https://www.cloudflare.com/learning/dns/dns-cache-poisoning/.
Cloudflare. Dec 2021 [Accessed: Sep 2022]. Cloudflare One. At a glance
brochure, https://www.cloudflare.com/static/e9ea5dfaa69c554ccicbaa7f3ed41act/
Cloudflare_One_at_a_glance.pdf.

Comcast. Jun 2020. Xfinity Internet Joins Firefox’s Recursive Re-
solver Program, Committing to Customer Privacy Protection. Press re-
lease, https://corporate.comcast.com/press/releases/comcast-xfinity-internet-
firefox-trusted-recursive-resolver- program- customer-privacy.

C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. 2016. Client Subnet
in DNS Queries. RFC 7871. RFC Editor.

Levente Csikor, Himanshu Singh, Min Suk Kang, and Dinil Mon Divakaran.
2021. Privacy of DNS-over-HTTPS: Requiem for a Dream?. In IEEE European
Symposium on Security and Privacy. IEEE Computer Society, Los Alamitos, CA,
USA, 252-271. https://doi.org/10.1109/EuroSP51992.2021.00026

S. Dickinson, B. Overeinder, R. van Rijswijk-Deij, and A. Mankin. 2020. Recom-
mendations for DNS Privacy Service Operators. BCP 232. RFC Editor.

DNSCrypt project. [Accessed: Sep 2022]. DNSCrypt version 2 protocol specifica-
tion. [Online], https://dnscrypt.info/protocol/.

efficient iP. Mar 2019 [Accessed: Sep 2022]. Zero Trust: Verifying beyond perime-
ters, DNS security is key. Blogpost, https://www.efficientip.com/zero-trust-dns-
security/.

Justin Ellingwood. Nov 2014 [Accessed: Sep 2022]. Understanding Nginx
HTTP Proxying, Load Balancing, Buffering, and Caching. DigitalOcean blog-
post, https://www.digitalocean.com/community/tutorials/understanding- nginx-
http- proxying-load-balancing-buffering-and-caching.

ETSI GS NFV 002. Oct 2013. Network Functions Virtualization (NFV); Architec-
tural Framework v1.1.1. http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/
01.01.01_60/gs_NFV002v010101p.pdf.

Paul Fisher. Mar 2022 [Accessed: Sep 2022]. Kong Gateway 2.8: Increase Security
and Simplify API Management. Product Releases, https://konghq.com/blog/kong-
gateway-2-8.

Sean Gallagher. Apr 2018 [Accessed: Sep 2022]. How to keep your ISP’s
nose out of your browser history with encrypted DNS. arsTechnica Blog-
post, https://arstechnica.com/information-technology/2018/04/how-to-keep-
your-isps-nose-out-of-your-browser-history-with-encrypted-dns/.

Robert Gibb. Jun 2016 [Accessed: Sep 2022]. What is Time to First Byte? Stackpath
Blogpost, https://blog.stackpath.com/time- to-first-byte/.

Evan Gilman and Doug Barth. 2017. Zero Trust Networks. O’Reilly Media Inc,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

Google. [Accessed: Sep 2022]. What is Apigee? Google Cloud Docs, https:
//cloud.google.com/apigee/docs/api-platform/get-started/what-apigee.

Mike Hadlow. May 2013 [Accessed: Sep 2022]. The Benefits of a Reverse Proxy.
DevOps Zone - Interview, https://dzone.com/articles/benefits-reverse-proxy.
Mike Hathaway. Feb 2020 [Accessed: Sep 2022]. What is OCSP and how does it
work? ascertia Blogpost, https://blog.ascertia.com/what-is-ocsp-and-how-does-
it-work.

P. Hoffman and P. McManus. 2018. DNS Queries over HTTPS (DoH). RFC 8484.
Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc8484.txt

[27]

(28]

[29

[30

W w
N =

[33

(34]

[35

[36

[37

[38

[39

[40]

[41

"~
&

~
&

S
&

o
&,

Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.
Specification for DNS over Transport Layer Security (TLS). RFC 7858. Internet
Engineering Task Force. 1-19 pages. http://www.rfc-editor.org/rfc/rfc7858.txt
IANA. Feb 2020 [Accessed: Sep 2022]. Technical requirements for authoritative
name servers. Online: https://www.iana.org/help/nameserver-requirements.
Infoblox. May 2020 [Accessed: Sep 2022]. DNS Security is Critical to Zero
Trust Network Architecture. Blogpost, https://blogs.infoblox.com/security/dns-
security-is-critical-to- zero- trust-network-architecture/.

IONOS. May 2022 [Accessed: Sep 2022]. DNS TTL best practices: Understand-
ing and configuring DNS TTL. Configuration guide, https://www.ionos.com/
digitalguide/server/configuration/understanding-and- configuring- dns-ttl/.

ISC. [Accessed: Sep 2022]. Bind9. Online, https://www.isc.org/bind/.

ISC. [Accessed: Sep 2022]. Bind9.17.7 - Release notes. Online, http://ftp.iij.ad.jp/
pub/network/isc/bind9/9.17.7/doc/arm/html/notes.html#notes- for-bind-9-17-7.
ISPreview. Sep 2019. Firefox Says - NO DNS Over HTTPS (DoH) by Default for
UK. Blog post, https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-
dns-over-https-doh-by- default-for-uk.html.

JH Software. 2021 [Accessed: Sep 2022]. New in Simple DNS Plus. Online,
https://simpledns.plus/kb/194/new-in-simple-dns-plus-v9-0.

Michael Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Token (JWT).
RFC 7519. https://doi.org/10.17487/RFC7519

Dan Kegel. 2014 [Accessed: Sep 2022]. The C10K problem. Online, http://www.
kegel.com/c10k.html.

Dae Wook Kim and Junjie Zhang. 2015. You Are How You Query: Deriving Be-
havioral Fingerprints from DNS Traffic. In Security and Privacy in Communication
Networks, Bhavani Thuraisingham, XiaoFeng Wang, and Vinod Yegneswaran
(Eds.). Springer International Publishing, Cham, 348-366.

Kinsta. Jan 2022 [Accessed: Sep 2022]. What Is Nginx? A Basic Look at What It Is
and How It Works. Glossary, https://kinsta.com/knowledgebase/what-is-nginx/.
KNOT DNS. [Accessed: Sep 2022]. kdig - Advanced DNS lookup utility. Online,
https://www.knot-dns.cz/docs/2.6/html/man_kdig.html.

Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. 2014. Software-Defined Networking: A
Comprehensive Survey. ArXiv e-prints 103 (06 2014). https://doi.org/10.1109/
JPROC.2014.2371999

Chenta Lee. Dec 2021 [Accessed: Sep 2022]. Zero Trust and DNS Security: Better
Together. SecurityIntelligence Blogpost, https://securityintelligence.com/posts/
zero-trust-dns-security/.

Zi Lin. Feb 2015 [Accessed: Sep 2022]. TLS Session Resumption: Full-speed and
Secure. Cloudflare Blog post, https://blog.cloudflare.com/tls- session-resumption-
full-speed-and-secure/.

Linux manpages. Aug 2021 [Accessed: Sep 2022]. bridge(8) — Linux manual page.
Online, https://man7.org/linux/man-pages/man8/bridge.8.html.

Linux manpages. Aug 2021 [Accessed: Sep 2022]. iptables(8) — Linux manual
page. Online, https://man7.org/linux/man-pages/mang/iptables.8.html.

Linux manpages. Aug 2021 [Accessed: Sep 2022]. veth(4) — Linux manual page.
Online, https://man7.org/linux/man-pages/man4/veth.4.html.

Microsoft. Jan 2021 [Accessed: Sep 2022]. Lessons learned in engineering Zero
Trust networking. Blogpost, https://www.microsoft.com/en-us/insidetrack/
lessons-learned-in-engineering-zero- trust-networking.

P. Mockapetris. 1987. Domain names - concepts and facilities. STD 13. RFC Editor.
http://www.rfc-editor.org/rfc/rfc1034.txt http://www.rfc-editor.org/rfc/rfc1034.
txt.

NetworkComputing. Mar 2005 [Accessed: Sep 2022]. A GSLB Reality Check.
Online, https://www.networkcomputing.com/data-centers/gslb-reality-check.
Adis Nezirovic. May 2019 [Accessed: Sep 2022]. 5 Ways to Extend HAProxy with
Lua. HAProxy blog, https://www.haproxy.com/blog/5-ways-to-extend-haproxy-
with-lua/.

Nginx. [Accessed: Jun 2022]. NJS Scripting Language. Online, https://nginx.org/
en/docs/njs/.

NGINX Docs. [Accessed: Sep 2022]. Deploying NGINX and NGINX Plus on
Docker. Online, https://docs.nginx.com/nginx/admin-guide/installing-nginx/
installing-nginx-docker/.

NLNetLabs. [Accessed: Sep 2022]. Unbound - About. Online, https://www.
nlnetlabs.nl/projects/unbound/about/.

T. Pauly. 2020 [Accessed: Sep 2022]. Enable encrypted DNS. WWDC 2020 video,
https://developer.apple.com/videos/play/wwdc2020/10047.

R. Prakash. 2020 [Accessed: Sep 2022]. Build trust through better privacy. WWDC
2020 video (11:57), https://developer.apple.com/videos/play/wwdc2020/10676.
Eric Rescorla. 2022. The Transport Layer Security (TLS) Protocol Version 1.3.
Internet-Draft draft-ietf-tls-rfc8446bis-04. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-ietf-tls-rfc8446bis-04 Work in Progress.
Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. 2020. Zero Trust
Architecture. NIST Special Publication 800-207,https://doi.org/10.6028/NIST.SP.
800-207.

Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Dr. Carlisle Adams. 2013. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 6960. https://doi.org/10.17487/

https://www.a10networks.com/glossary/what-is-ipv4-exhaustion/
https://links.a10networks.com/NDE3LUdVQi05OTUAAAGE_zvj7YLRpVIB8AdLlqEceIT3UZEVlXclrkm6DG8ii00cR609-QZ5G5TQRu29igpHR0x8lwM=
https://links.a10networks.com/NDE3LUdVQi05OTUAAAGE_zvj7YLRpVIB8AdLlqEceIT3UZEVlXclrkm6DG8ii00cR609-QZ5G5TQRu29igpHR0x8lwM=
https://links.a10networks.com/NDE3LUdVQi05OTUAAAGE_zvj7YLRpVIB8AdLlqEceIT3UZEVlXclrkm6DG8ii00cR609-QZ5G5TQRu29igpHR0x8lwM=
https://www.ctrl.blog/entry/unbound-tls-forwarding.html
https://www.ctrl.blog/entry/unbound-tls-forwarding.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.akamai.com/blog/security/we-need-to-encrypt-dns-heres-another-compelling-reason-why
https://www.akamai.com/blog/security/we-need-to-encrypt-dns-heres-another-compelling-reason-why
https://www.nginx.com/blog/using-nginx-as-dot-doh-gateway/
https://www.nginx.com/blog/using-nginx-as-dot-doh-gateway/
https://www.journalism.org/2012/11/28/role-social-media-arab-uprisings/
https://www.journalism.org/2012/11/28/role-social-media-arab-uprisings/
https://www.cloudflare.com/en-gb/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/en-gb/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/learning/dns/dns-cache-poisoning/
https://www.cloudflare.com/static/e9ea5dfaa69c554cc1cbaa7f3e441acf/Cloudflare_One_at_a_glance.pdf
https://www.cloudflare.com/static/e9ea5dfaa69c554cc1cbaa7f3e441acf/Cloudflare_One_at_a_glance.pdf
https://corporate.comcast.com/press/releases/comcast-xfinity-internet-firefox-trusted-recursive-resolver-program-customer-privacy
https://corporate.comcast.com/press/releases/comcast-xfinity-internet-firefox-trusted-recursive-resolver-program-customer-privacy
https://doi.org/10.1109/EuroSP51992.2021.00026
https://dnscrypt.info/protocol/
https://www.efficientip.com/zero-trust-dns-security/
https://www.efficientip.com/zero-trust-dns-security/
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://konghq.com/blog/kong-gateway-2-8
https://konghq.com/blog/kong-gateway-2-8
https://arstechnica.com/information-technology/2018/04/how-to-keep-your-isps-nose-out-of-your-browser-history-with-encrypted-dns/
https://arstechnica.com/information-technology/2018/04/how-to-keep-your-isps-nose-out-of-your-browser-history-with-encrypted-dns/
https://blog.stackpath.com/time-to-first-byte/
https://cloud.google.com/apigee/docs/api-platform/get-started/what-apigee
https://cloud.google.com/apigee/docs/api-platform/get-started/what-apigee
https://dzone.com/articles/benefits-reverse-proxy
http://www.rfc-editor.org/rfc/rfc8484.txt
http://www.rfc-editor.org/rfc/rfc7858.txt
https://www.iana.org/help/nameserver-requirements
https://blogs.infoblox.com/security/dns-security-is-critical-to-zero-trust-network-architecture/
https://blogs.infoblox.com/security/dns-security-is-critical-to-zero-trust-network-architecture/
https://www.ionos.com/digitalguide/server/configuration/understanding-and-configuring-dns-ttl/
https://www.ionos.com/digitalguide/server/configuration/understanding-and-configuring-dns-ttl/
https://www.isc.org/bind/
http://ftp.iij.ad.jp/pub/network/isc/bind9/9.17.7/doc/arm/html/notes.html#notes-for-bind-9-17-7
http://ftp.iij.ad.jp/pub/network/isc/bind9/9.17.7/doc/arm/html/notes.html#notes-for-bind-9-17-7
https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-uk.html
https://www.ispreview.co.uk/index.php/2019/09/firefox-says-no-dns-over-https-doh-by-default-for-uk.html
https://simpledns.plus/kb/194/new-in-simple-dns-plus-v9-0
https://doi.org/10.17487/RFC7519
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
https://kinsta.com/knowledgebase/what-is-nginx/
https://www.knot-dns.cz/docs/2.6/html/man_kdig.html
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://securityintelligence.com/posts/zero-trust-dns-security/
https://securityintelligence.com/posts/zero-trust-dns-security/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://man7.org/linux/man-pages/man8/bridge.8.html
https://man7.org/linux/man-pages/man8/iptables.8.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.microsoft.com/en-us/insidetrack/lessons-learned-in-engineering-zero-trust-networking
https://www.microsoft.com/en-us/insidetrack/lessons-learned-in-engineering-zero-trust-networking
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
https://www.networkcomputing.com/data-centers/gslb-reality-check
https://www.haproxy.com/blog/5-ways-to-extend-haproxy-with-lua/
https://www.haproxy.com/blog/5-ways-to-extend-haproxy-with-lua/
https://nginx.org/en/docs/njs/
https://nginx.org/en/docs/njs/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-docker/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-docker/
https://www.nlnetlabs.nl/projects/unbound/about/
https://www.nlnetlabs.nl/projects/unbound/about/
https://developer.apple.com/videos/play/wwdc2020/10047
https://developer.apple.com/videos/play/wwdc2020/10676
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc8446bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-rfc8446bis-04
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.17487/RFC6960

RFC6960
[58] Nick Sullivan. Mar 2017 [Accessed: Sep 2022]. Introducing Zero Round Trip
Time Resumption (0-RTT). Cloudflare Blog post, https://blog.cloudflare.com/
introducing-0-rtt/.
Traefik Labs. [Accessed: Sep 2022]. Concepts. Online, https://doc.traefik.io/
traefik/getting- started/concepts/.
Traefik Labs. [Accessed: Sep 2022]. Plugins and Traefik Pilot. Online, https:
//doc.traefik.io/traefik/plugins/.
International Telecommunication Union. Oct 2021. Information technology -
Open Systems Interconnection - The Directory: Public-key and attribute certifi-
cate frameworks. Standard, https://www.itu.int/rec/T-REC-X.509.
Paul Vixie. 1999. Extension Mechanisms for DNS (EDNS0). RFC 2671. RFC Editor.
http://www.rfc-editor.org/rfc/rfc2671.txt http://www.rfc-editor.org/rfc/rfc2671.
txt.
Rory Ward and Betsy Beyer. 2014. BeyondCorp: A New Approach to Enterprise
Security. ;login: Vol. 39, No. 6 (2014), 6-11.
S. Weiler and D. Blacka. 2013. Clarifications and Implementation Notes for DNS
Security (DNSSEC). RFC 6840. Internet Engineering Task Force. 1-21 pages.
http://www.rfc-editor.org/rfc/rfc6840.txt

[59]
[60]

[61]
[62]

[63]

[64]

APPENDIX

Below, we show the sequence charts of the most important steps
when establishing a connection to a service in a traditional network
using unencrypted (cf. Fig. 5a) and encrypted DNS (cf. Fig. 5b), and

in ZT using the default ZT mechanisms (cf. Fig. 6a) and ZERODNS
(cf. Fig. 6b).

Observe that in ZERODNS (cf Fig. 6b), the TTFB of client applica-
tions can be close to the one in traditional networks using adequate
encryption.

Note, since the actual steps after establishing the connection to a
service is implementation-specific (i.e., data might be pushed/read
after connection establishment, or further credentials are needed),
similar to §3.2, we denote those subsequent steps as “Service-specific
data exchange” for brevity. Furthermore, any additional mutual TLS
authentication with the service is also omitted from the sequence
charts. Similarly, in Fig. 6, the actual ZT authorization steps are
not detailed for easier comprehension, i.e., they are collectively
shown as ZT authorization (in Fig. 6a) and ZT Auth. and ZT
AuthZ tokens (in Fig. 6b). Finally, for the same purpose (i.e., as
being implementation-specific), the steps of the PEP at the service’s
site is not detailed either. Recall, however, that a PEP at the service
site might make additional message exchanges with the ZT control
plane for verification purposes, or the authorization tokens sent by
the client contains the necessary information to do the same (i.e.,
verifying the signature is sufficient).

https://doi.org/10.17487/RFC6960
https://blog.cloudflare.com/introducing-0-rtt/
https://blog.cloudflare.com/introducing-0-rtt/
https://doc.traefik.io/traefik/getting-started/concepts/
https://doc.traefik.io/traefik/getting-started/concepts/
https://doc.traefik.io/traefik/plugins/
https://doc.traefik.io/traefik/plugins/
https://www.itu.int/rec/T-REC-X.509
http://www.rfc-editor.org/rfc/rfc2671.txt
http://www.rfc-editor.org/rfc/rfc2671.txt
http://www.rfc-editor.org/rfc/rfc2671.txt
http://www.rfc-editor.org/rfc/rfc6840.txt

Client | | DNS | | ZT CP | |Service
——TCP SYN

[«—TCP SYN-ACK™
— TCP ACK .

j—

-4

| Client | | DNS | | ZT CP | |Service

oo

D—UDP DNS Req [TCP DNS Req—>

E:](_UDP DNS Resp le—TCP DNS Resp.

e

' TCPSYN___ TCP SYN _
TCP SYN-ACK
< e TCP SYN-ACK
TCP ACK TCP ACK

}----

B e L

< ---e o]
< --- -
D S SRS

(a) Traditional way with DNS over unencrypted UDP. (b) Traditional way with encrypted DNS.

Figure 5: Sequence charts of the most important steps when establishing a connection to a service in a traditional network using (a)
unencrypted DNS over UDP, and (b) encrypted DNS over TCP/TLS.

;; ANSWER SECTION:

mtls-dns.com. 55 IN A 172.30.1.10

mtls-dns.com. 60 IN TXT "JWT:::webservicel-->eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJI9.
eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZSI6IkpvaG4gRGI1IiwiYWRtaW4iOnRydWUsImlhdCI6MTUXNjIzOTAyMiwizZ
W1haWwiOiJhZG1pbkBhZG1pbi5jb20iLCIJyb2x1lcyI6ImFkbWluICwgdXNlciwgc31zYWRtaW4ilLCImdXJ0@aGVyX3Rva2 Vuljoid2dobm"

mtls-dns.com. 60 IN TXT "hkZ3VvNHduaG9uzZ2Y@OHcwdDMObmVmYWVkbmZxb21vZWFuzZiJ9.
FL1LhOYjSWkskEMWM1alniWBOjzCzNHtJ6SPSkomdJpIYrDDRHLQcAdgfPaxwUroK_gvOReyqnCEsDdHgiG3gg"
mtls-dns.com. 55 IN TXT "JWT:::webservice2-->userl1_token"

Listing 1: Example of an ANSWER section of a modified DNS response in ZERODNS

2 "tokens":

3 {

4 "CN=Client1":

5 {

6 "webservicel":

7 {

8 "token":"eyJhbGciO0iJIUzUxMiIsInR5cCI6IkpXVCJI9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFt
9 ZSI6IkpvaG4gRGI1IiwiYWRtaW4iOnRydWUsImlhdCI6MTUXNjIzOTAyMiwiZW1haWwiOiJhZG1pbk
10 BhZG1pbi5jb2@iLCJyb2x1lcyI6ImFkbWluICwgdXNlciwgc3lzYWRtaW4iLCImdXJ@aGV yX3Rva2V
11 uljoid2dobmhkZ3VvNHduaG9uZ2Y@0OHcwdDMObmVmYWVkbmZxb21vZWFuzZiJ9.FL1LhOYjSWkskEMW
12 M1alniWB0jzCzNHtJ6SPSkOmdJIpIYrDDRHLQcAdqfPaxwUr@K_gvOReyqnCEsDdHgiG3gg",

13 "ttl":60

14 P

15 "webservice2":

16 {

17 "token":"eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCI9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFt
18 ZSI6IkpvaG4gRGI91IiwiYWRtaW4iOnRydWUsImlhdCI6MTUXNjIzOTAyMn@.VFb@qJ1LRg_4ujbZoR
19 MXnVkUgiuKg5KxWqNdbKq_G9Vvz -S1zZa9LPxtHWKa64zD120fkT8F6jBt_K4riU-fPg",

20 "ttl":55

21 }

22 3,

23 "CN=Client2":

24 {

25 "webservicel":

26 {

27 "token":"eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCI9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFt
28 ZSI6IkpvaG4gRGILTIiwiYWRtaW4iOnRydWUsImlhdCI6MTUXNjIzOTAyMn®@.VFb@qJ1LRg_4ujbZoR
29 MXnVkUgiuKqg5KxWgNdbKq_G9Vvz -S1zZa9LPxtHWKa64zD120ofkT8F6jBt_K4riU-fPg",

30 "ttl":66

31 }

32 }

33 }

34}

Listing 2: Example JSON of a simple policy in ZERODNS. Clients are identified by their client certificates and tokens are defined for each
service a client has access to.

Client | | DNS | | ZT CP | |Service

F—TCPSYN__ |
- TCP SYN-ACK’
T—TCP ACK—,| |

| Client Certificate ;|
Server Finished—T

ISR : Client | [zeroDNS = zTcP | | Service

TCP DNS Req—>

F—TCPSYN__ |
[« TCP SYN-ACK"

L—TCP DNS Resp. !
rm————— TCP SYN : : T TCP ACK—,

E—

l«——TCP SYN-ACK
TCP ACK:

Client Certlflcate_)

Server Finished——T

DQ: Taulhorizaton:>h

o
'
'
'
'

TCP SYN___! : L TCPSYN

' — 2T ' —>

e TCP SYN-ACK ; « ——TCP SYN-ACK
T ————————TCP ACK: ——TCP ACK:

v v v v v v v
(a) Default Zero Trust architecture. (b) ZERODNS.

Figure 6: Sequence charts of the most important steps when establishing a connection to a service in ZT using (a) the default ZT mechanisms,
and (b) in ZERODNS.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Traditional Perimeter-based Security Model
	2.2 Why We Need a Better Model?
	2.3 What is Zero Trust?
	2.4 Domain Name System

	3 ZeroDNS Architecture
	3.1 Workflow
	3.2 Benefits of ZeroDNS

	4 Evaluation
	4.1 Methodology
	4.2 Baseline Measurements
	4.3 Relative Response Times

	5 Discussion and Future Work
	6 Conclusion
	References

