
Tuple Space Explosion: A Denial-of-Service Attack
Against a Software Packet Classifier

Levente Csikor
†
, Dinil Mon Divakaran

⋇
, Min Suk Kang

†
, Attila Kőrösi

‡
, Balázs Sonkoly

∔‡
,

Dávid Haja
‡
, Dimitrios P. Pezaros

∗
, Stefan Schmid

⋎
, Gábor Rétvári

‡

†
National University of Singapore,

⋇
Trustwave,

‡
Budapest University of Technology and Economics,

∔
MTA-BME

Network Softwarization Research Group,
∗
University of Glasgow,

⋎
Faculty of Computer Science, University of Vienna

ABSTRACT

Packet classification is one of the fundamental building blocks

of various security primitives and thus it needs to be highly effi-

cient and available. In this paper, we evaluate whether the de facto

packet classification algorithm (i.e., Tuple Space Search scheme,

TSS) used in many popular software networking stacks, e.g., Open

vSwitch, VPP, HyperSwitch, is robust against low-rate denial-of-

service (DoS) attacks. We present the Tuple Space Explosion (TSE)

attack that exploits the fundamental space/time complexity of the

TSS algorithm. We demonstrate that the TSE attack can degrade the

switch performance to as low as 12% of its full capacity with a very

low packet rate (i.e., 0.7 Mbps) when the target packet classification

only has simple policies, e.g., “allow a few flows but drop all others”.

Then, we show that if the adversary has partial knowledge of the

installed classification policies, she can virtually bring down the

packet classifier with the same low attack rate. The TSE attack, in

general, does not generate any specific attack traffic patterns but

some attack packets with randomly chosen IP headers and arbitrary

message contents. This makes it particularly hard to build a signa-

ture of our attack traffic for detection. Since the TSE attack exploits

the fundamental complexity characteristics of the TSS algorithm,

unfortunately, there seems to be no complete mitigation of the prob-

lem. We thus suggest, as a long-term solution, to use other packet

classification algorithms (e.g., hierarchical tries, HaRP, Hypercuts)

that are not vulnerable to the TSE attack. As a short-term solution,

we propose MFCGuard, a monitoring system that carefully manages

the entries in the tuple space to keep packet classification fast for

the packets that are eventually accepted by the system.

CCS CONCEPTS

• Security and privacy→ Denial-of-service attacks.

ACM Reference Format:

Levente Csikor
†
, Dinil Mon Divakaran

⋇
, Min Suk Kang

†
, Attila Kőrösi

‡
,

Balázs Sonkoly
∔‡

, Dávid Haja
‡
, Dimitrios P. Pezaros

∗
, Stefan Schmid

⋎
,

Gábor Rétvári
‡
. 2019. Tuple Space Explosion: A Denial-of-Service Attack

Against a Software Packet Classifier. In Proceedings of CoNEXT ’19. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3359989.3365431

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00

https://doi.org/10.1145/3359989.3365431

1 INTRODUCTION

Packet classification is one of the fundamental building blocks of

various security primitives. From access control implementation to

network traffic isolation to denial-of-service defenses, they all re-

quire to classify incoming packets into multiple groups for different

purposes, e.g., block/redirect certain traffic. Packet classification,

thus, should be highly efficient, dependable, and available.

With the proliferation of virtualization techniques, packet classi-

fication has become softwarized and been widely used in virtualized

systems today. As an example, Open vSwitch (OVS) [57] (along with

many other software switches; e.g., VPP [26], HyperSwitch [59],

GSwitch [76]) is universally used in virtualized environments. OVS

is massively used for basic switching and firewall implementation

for the tenants in cloud hosting systems enabling them to further

specify custom firewall rules for their own purposes [15, 70] (§2).

Moreover, dynamic filter rule updates for denial-of-service defense

can be implemented with the software-defined networking (SDN)

capability [8], particularly OpenFlow, in OVS [45].

In this paper, we evaluate whether the de facto packet classifi-

cation algorithm widely used in many popular software switches

(OVS as our running example) is robust against denial-of-service

(DoS) attacks (§3). Our study has great importance since the targeted

packet classification algorithm, namely, Tuple Space Search scheme

(TSS) [64], is extensively used not only in traditional appliances but

also in wide range of virtualized networked systems; just to name a

few, software based intrusion detection systems [43], stateful NAT

implementation [33, 48], cloud management systems [25, 71].

Our findings are alarming. Not only effective DoS attacks against

the TSS packet classification are possible but also detection and

mitigation of the attacks are hard. First, we present a new low-

rate DoS attack, which we call the Tuple Space Explosion (TSE)

attack (§3), against the TSS scheme (§4). We demonstrate that as lit-

tle as 670 kbps of attack traffic from a single traffic source can easily

degrade a single OVS instance from its full capacity of 10 Gbps to

2 Mbps when an adversary has a partial control over (or knowledge

of) the access control rules installed in the targeted OVS (§5).When

an adversary has no such access to her target (§6), we show, she can

still achieve a significant degradation of 88% from the maximum

capacity with low attack traffic volume.

One interesting aspect of the TSE attack is that it does not
demonstrate any specific patterns of its attack traffic. Unlike the

existing low-rate DoS attacks (e.g., algorithmic-complexity DoS

attacks [16, 61], shrew attacks [42]) that send carefully-crafted at-

tack packet sequences with specific traffic patterns to the target

system, the TSE attack only requires arbitrary packet header fields

https://doi.org/10.1145/3359989.3365431
https://doi.org/10.1145/3359989.3365431

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

and message contents, along with arbitrary packet arrival times.

This makes its identification hard as it is not straightforward to

define a specific signature of the attack traffic.

In fact that the TSE attack is highly effective only with randomly-

generated inputs implies that the attack does not depend on specific

attack strategies. Instead, it relies on the internal state of the target

switch. That is, there exist certain states of the target switch that

makes it vulnerable to DoS attacks with randomly-generated in-

puts. We investigate such system states in terms of Access Control

Lists (ACLs) of the TSS packet classification. Unfortunately, some

commonly used ACL patterns (e.g., WhiteList+DefaultDeny) are
shown to be particularly vulnerable to the TSE attack.

Lastly, the very fact that the target of the TSE attack is the packet

classifier itself makes it hard to design countermeasures. Defend-

ing against the TSE attack would require to have another packet

classifier to filter out suspicious packets. However, unfortunately,

the additional packet classifier is also likely vulnerable to the same

DoS attack if implemented with the TSS algorithm. To mitigate the

TSE DoS attack, thus, one has to deploy a different packet classifier

that is robust against the TSE attacks. Yet, this suggests that this

second packet classifier could have been simply used as the main

classifier in the first place!

The TSE attack exploits the fundamental space/time complex-

ity of the TSS algorithm and thus no complete mitigation of the

problem seems possible (§7). Therefore, as a long-term solution,

we suggest to use other packet classification algorithms that are

not vulnerable to the TSE attack. Hierarchical tries [31], HaRP [58],

and Hypercuts [10] packet classification algorithms seem to be un-

affected by the TSE attack directly, although more in-depth study

may be required for comprehensive analysis.

As a short-term solution, we present a cache management

scheme, which we call MFCGuard, that dynamically monitors the

number of entries in the tuple space and removes less important

ones to lower the performance overhead of the packet classification

(§8). We show that MFCGuard can limit the performance degradation

for the packets that are eventually allowed to the system. This guar-

anteed performance for the allowed packets is achieved, however, at

the expense of much increased processing time for the packets to be

denied by the ACL rules. We discuss some operational concerns of

MFCGuard, particularly when used in cloud hosting systems, where

the increased computation overhead of MFCGuard may affect the

operation of the tenants’ workloads in the system.

2 BACKGROUND

Here, we describe the operation and fundamental building blocks

of the most typical virtual switches, particularly, Open vSwitch

(OVS) [57], and present the packet classification, called Tuple Space

Search (TSS), used in OVS. Readers familiar with the packet classi-

fication algorithms in software switches may continue from §3.

2.1 Switching Stacks for Virtualization

Enterprises increasingly offload business-critical workloads to the

public cloud to benefit from low infrastructure costs, high availabil-

ity, and flexible resource provisioning. Reliable and efficient service

provisioning heavily depends on the ability to efficiently switch

traffic between the tenants’ workloads and the outside world.

In this paper, we use OVS as our running example, but the

presented vulnerabilities might affect other TSS-based software

switches (e.g., VPP [26], Hyperswitch [59], GSwitch [76]). OVS [57]

is an open source, multilayer, production quality software switch

that enables massive network automation through programmatic

extensions [1]. It can be managed remotely through standardized

control plane protocols [52, 56]. The OVS flow table describes the
packet processing behavior to be implemented by the switching

logic at a high level. Due to its flexibility, generality, and community

support, OVS has been extensively used in cloud deployments [1].

The flow table of an OVS switch is an ordered set of flows, where
each flow is a pair of (1) a wildcard rule, operating on specific

protocol header fields (e.g., IP source address, ports) and designating

packets that belong to the flow, and (2) an action, a set of packet
processing primitives to be applied to packets matching the flow

rule; e.g., “forward to port”, or “drop”.

Two flows in the flow table are said to overlap if there is a packet
header that matches both. In this case, thematching flow that occurs

first in the flow table takes precedence. For instance, in the sample

ACL in Fig. 6, a packet with source IP address 10.0.0.1, source
and destination ports 34521, and 443, respectively, matches both

the second and the last flow entries with the first flow overriding

the last one by higher priority.

In contrast, a flow table in which all rules are disjoint is order-
independent because all packets have a single matching rule and

equal priority (i.e., order is irrelevant). In general, this makes packet

classification much simpler [41].

Most software switches (if not all) support order-dependent flow

tables despite the performance benefit of order-independent tables

because of the flexibility of the former. In virtualized environments

(e.g., multiple tenants share a single software switch for access

control), users with various networking knowledge configure the

flow rules in the switches. The greater flexibility of order-dependent

tables support rule wildcarding and flow priorities, which allow

complex packet processing logics to be described concisely.

2.2 TSS for Fast Packet Classification

To cut down the prohibitive cost of packet classification, OVS adopts

the well-known fast path/slow path separation principle [50]. The

fast path comprises two layers of flow caches, and the slow path

implements a complete representation of the flow table serving as

a fallback when the fast path cannot decide on the fate of a packet.

Only the first packet of each flow is subjected to full-blown flow-

table processing, i.e., slow path, and the resulting flow-specific rules

and actions are then registered in the flow caches; the rest of the

flow’s packets take the fast path. This amortizes the cost of packet

classification over subsequent packets of a flow, contributing to

increased performance without loss of expressiveness and general-

ity [13, 39, 46] (cf. §11.1 for the general flow-cache hierarchy).

Within the fast path, the microflow cache implements a per-

transport-connection exact-match store where lookup occurs over

all header fields, while the megaflow cache (MFC) bundles multiple

microflows into a single megaflow to impose common processing

to the entire bundle [29, 48, 63]. In this design, the microflow cache

merely serves as “short-term” memory and it is often exhausted

even in normal operation (by default, it contains only a couple of

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

hundred entries). The lookup algorithm in the MFC relies on the

TSS scheme [64], the prevailing packet classifier used to implement

ACLs in other hypervisor switches as well (e.g., VPP [26], Hyper-

Switch [59], GSwitch [76]). MFC generally saves on cache entries

by a single megaflow covering, say, all incoming HTTP connections

regardless of the source TCP port (i.e., TCP port wildcarded). In

a nutshell, this is done by collecting the entries matching on the

same set of header bits into a hash in which masked packet headers

can be found fast. Then, masks and associated hashes are searched

sequentially until the first matching entry is found.

Note that the TSS implementation in OVS does not know about

flow priorities; thus the slow path ensures that MFC entries are

all disjoint to make packet classification simpler yet introducing

worst case exponential complexity (i.e., exhaustive linear search

in the different masks). Correspondingly, as long as the number

of masks is kept in a reasonable range (e.g., couple of hundreds

masks), packet processing in the fast path is close to line rate. This

property of the TSS is the very logic we aim to exploit in this paper.

3 TUPLE SPACE EXPLOSION: OVERVIEW

Here, we provide a high-level overview of the attack. First, we

describe our threatmodel, thenwe show the essence of the proposed

TSE attack and discuss the algorithmic complexity vulnerability of

the TSS scheme using its implementation in OVS. Then, we show

two different approaches of TSE, each posing different requirements

and targets for the attacker.

3.1 Threat Model

We consider a general virtualized computing environment, where

a targeted software switch is used for packet processing and basic

network operations. This includes a typical multi-tenant cloud in-

frastructure whereby tenants lease resources in the cloud to deliver

public services. Tenants may use cloud management system (CMS)

APIs to set up their access-control list (ACL) rules in the underlying

software switch to access-control, redirect, or log accesses to differ-

ent resources [15, 35–37]. We consider that the internal algorithms

of the data plane fabric is fully known to adversaries.

The attacker’s goal is to send some attack packets to the virtual

switch, which when subjected to the implemented ACL will exhaust

the underlying resources denying access to the rest of the users.

The adversary only needs to have the capability of crafting and

sending IP packets with arbitrary legitimate headers without being

filtered at the first hand; e.g., by her upstream or transit ISPs.

Note that we do not require any privilege of the target switch

for the effective DoS attack. However, having some partial, internal

state of the target switch (e.g., installed ACL rules) can further

improve the efficiency (i.e., less number of required attack packets).

Here, we do not consider volumetric DoS attacks that congest

the target‘s network bandwidth with attack traffic.

3.2 DoS with Excessive MFC Masks

As mentioned in §2.2, the lesser the number of masks in the MFC

the much faster the packet classification is.

To provide a simple but useful intuition oh how easily this num-

ber can be increased, consider that in a hypothetical protocol (say,

HYP) having only 3 relevant header bits and consider a 3-bit-wide

“Whitelist+DefaultDeny” type flow table shown in Fig. 1. The MFC

is an unordered set of key-mask pairs C = {(K,M)} with entries

C = (K,M); here,M is a bitmap to mask relevant header bits and K
is a key to be matched on the masked bits. According to the TSS

scheme, we maintain a list of distinct masksM (the “tuple space”)

plus, for each maskM ∈ M, a hash HM that will be used to store

and lookup the keys with maskM .

Suppose that the switch receives a packet with HYP header

h1 = 001. Since, initially, the MFC is empty, the packet is deferred

to the slow path, which finds the first flow in the flow table to

match, associates the action allow, and installs a new key-mask

pair C1 = (001, 111) into the MFC; this amounts to adding the

new mask 111 to the mask listM and storing the key 001 in the

respective hash H111.

Now assume that a second packet arrives with header h2 = 111.
In this case, MFC lookup occurs as follows: take each mask M ∈
M one by one, apply M to the header and look up the resulting

bitvector in the corresponding hash HM ; if the lookup succeeds,

then return a cache hit; otherwise resort to the next mask. In this

case, there is only a single mask M = 111, so we look up the key

(h2 AND M) = 111 in H111. Since the lookup fails, this is a cache

miss. The slow path will find the drop rule to match, and it will

insert a new MFC entry into the fast path.

At this point, there are multiple choices to generate a new en-

try, each striking a different balance between space- and time-

complexity (see details in §4); which one is taken in any particular

case is the result of a rather involved construction of heuristics in

the OVS slow path [57]. In a nutshell, when generating a new MFC

entry C for a packet with header h, OVS maintains the following

two invariants:

Inv(1) Cover: h matches C .
Inv(2) Independence: C is disjoint from any C ′ ∈ C.

Inv(1) simply states that an MFC entry will match the packet

header that sparked its generation. Inv(2) greatly simplifies the

fast path code because lookup can early-exit once the first match

is found, instead of having to tediously search through the entire

mask list to check whether higher-priority matches occur later in

the list (cf. Alg. 1 in §11.2). Hence, h2 = 111 can spawn a new key-

mask pair of either C2 = (111, 111) or C2 = (111, 100), covering 1

or 4 packets, respectively, according to different strategies (cf §4.1).

One might realize that due to these invariants, the number of

key-mask pairs covering all possible packets significantly increases

with the number and bit-width of the headers the ACL matches on.

Particularly, if we establish a logical OR relation between the allow
rules on more header fields (see a typical example in Fig. 6), it will

in turn create an AND connection on the drop rule. Therefore, in

order to test each header field at the same time, we need to test each
combination of key-mask pairs for the individual headers resulting

in a multiplicative increase in the tuple space (cf. §4.2).
This means that a typical ACL matching on the IP source address

and TCP ports (e.g., ACL in Fig 6) can easily result in thousands of

MFC masks. Consequently, this type of security policies/ACLs with

an OR relation between the targeted header fields can become the

sweet-spot for our attack; hence the name Tuple Space Explosion.
Next, we briefly present two different approaches of the TSE

attack based on the partial control an adversary can have over the

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

ACL. Then, in §4, we give a comprehensive overview of the look up

algorithm, analyze its space- and time-complexity as the number

of headers grows, and go through each case step-by-step to show

how the MFC is exactly being managed.

3.3 Two Approaches of the TSE Attack

Before, we have seen that in order to practically populate the MFC

with new entries and masks, we need to send a specially crafted

packet sequence corresponding to the installed ACL. For instance,

sending packets with (HYP) header {001} and {100} towards to

the ACL shown in Fig. 1 will spawn entries #1 and #2 in the MFC

as depicted in Fig. 3. However, a subsequent packet with header

{101} will be also “caught by” entry #2, hence not increasing the

number of masks in the MFC. Correspondingly, being aware of the

ACL itself is a key aspect to the efficiency of the TSE attack. Thus,

we present two different approaches of the TSE attack each posing

different requirements and targets for the attacker.

In order to explain the main differences between them, and their

practical targets, we need to understand a key abstraction in a

cloud environment: the per-user virtual switches tenants configure
to set up their ACLs. Tenants perceive these virtualised resources

as their own physical switch, however switches are only logically

separated and all of them are implemented and managed by the

same individual software switch instance. Therefore, all workloads

happened to be scheduled to the same hypervisor inherently share

the switching fabric as well (e.g., the MFC).

Co-located TSE. We build on top of this abstraction: the attacker

has leased resources in the cloud, which inherently makes him/her

capable of installing ACLs into its own virtual switch. Then, the

shared MFC can be easily populated with new masks by targeting

the known ACLs (see details in §5). However, co-location comes at a

price that only those tenants’ workloads are affected that happened

to be scheduled to the same hypervisor.

General TSE. In this approach, we alleviate the restrictions of

Co-located TSE: we consider the case when the attacker has neither

resources in the cloud, nor knowledge about any ACLs. Here, we

investigate how much more effort an attacker needs in order to

achieve the same efficiency as Co-located TSE (see later in §6).

4 SPACE – TIME COMPLEXITY OF TSS

Next, we analyze the space- and time-complexity trade-offs of the

TSS scheme using its implementation in OVS as a typical example.

Then, we show how the TSS scheme manages its data structure, and

how to maximize the number of masks in the MFC step-by-step.

Clearly, the most time-consuming step in Alg. 1 is the iteration

through the mask listM, assuming that a hash lookup in HM is

O(1); the more the masks the slower the algorithm. The space-

complexity is in turn driven by the sheer storage size of the MFC

entries. Our observations are as follows.

Observation 1. The time-complexity of TSS lookup grows lin-
early with the number of distinct masks as O(|M|) and the space-
complexity grows linearly with the number of entries as O(|C|).

Next, we demonstrate that the complexity of cache lookup can

become prohibitive due to an algorithmic complexity vulnerability

in the underlying TSS scheme. In particular, we show specific corner

cases for which the MFC will exhibit exponential space- and/or

Wildcard rule Action

0 0 1 allow
* * * deny

Figure 1: Sample flow table

Key Mask Action
#1 000 111 deny
#2 001 111 allow
#3 010 111 deny
. deny
#8 111 111 deny

Figure 2: Exact-match

Key Mask Action
#1 001 111 allow
#2 100 100 deny
#3 010 110 deny
#4 000 111 deny

Figure 3: Wildcarding

time-complexity. For simplicity, we carry on with the hypothetical

3-bit protocol example (cf. Table 1), but bear in mind that MFC

works the same for arbitrary wide bit-widths of header fields.

4.1 Maximize MFC Masks: Single Header

Packet classification is conceptually easier when there is only a

single packet header field, e.g., IP protocol or destination address in

the flow rules [30, 63]. First, we concentrate on this case, i.e., when

the network policies match on a single header field only. Consider

again the simplified policy on 3 bits mentioned in §3.2, i.e., when

packets with header HYP 001 is allowed and everything else is

denied. Next, we discuss some possible strategies to construct the

MFC for this ACL using TSS.

An invalid strategy would be to install the flow table as is into

the MFC resulting in two masks and two MFC entries. However,

this would violate the independence invariant as the two entries

overlap: a packet with HYP 001 would match both MFC entries,

which would confuse the lookup algorithm. Consequently, in order

to load a flow table into the MFC, it first needs to be converted into

an order-independent form.

Exact-match strategy. One trivial order-independent transformation

would be to cover the entire range of HYP with a single completely

filled exact-matching hash, resulting in the TSS setup depicted in

Fig. 2. Since we have a single mask, TSS lookup is extremely fast

(cf. Observation 1). However, we need to add all possible 8 keys

that can occur on 3 bits to the hash, yielding a larger memory

footprint. Note that in general, the exact-match technique yields

optimal time-complexity with exponential space-complexity.

Wildcarding strategy. The opposite extreme would be to wildcard as

many bits as possible in order to get the broadest possible rules, and

the fewest hashes, in TSS. Here, we obtain an exact-match entry

for the allow-rule and separate key-mask pairs for testing each of

the related 3 header bits to cover the whole tuple space. First, check

whether the most significant bit is set and, if it is, then drop the

packet; then, test for the second bit provided that the first bit is not

set, and so on. One can easily check in Fig. 3 that the resulting MFC

is order-independent and it is the smallest possible representation

of this kind. We obtain 4 entries and 3 masks (the first and the last

entries have the same mask), reducing the space complexity from

8 megaflows to just 4 at the cost of increasing classification time

from a single iteration of the TSS lookup algorithm (Algorithm 1) to

possibly 3 iterations for the 3masks. Apparently, each strategy gives

a different compromise between space- and time-complexity (in

line with [27, 32]). The below theorem characterizes the attainable

tradeoffs in general TSS (see proof in the Appendix).

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Theorem 4.1. Given an ACL on aw-bit header field comprising
a single exact-match allow rule and a lower-priority DefaultDeny
policy, no TSS construction can achieve better than O(k) time with
O(k2

w
k) space complexity, for 1 ≤ k ≤ w .

Here, the parameter k balances between time- and space-

complexity: for k = 1, we get optimal time-complexity (O(1) time

with O(2w) space), for k = w we get optimal space-complexity

(O(w) time with O(w) space), and different settings for 1 ≤ k ≤ w
give different tradeoffs. While the compromise a particular TSS

implementation realizes in a setup depends on a lot of unknowns,

in practice OVS usually leans toward the “wildcarding” strategy (k
close tow), striving to minimize the memory footprint of the fast

path classifier even at the cost of crippling lookup efficiency (see

the comments in classifier.h in the OVS source code).

In essence, this means that for a single header of bit-widthw , the
MFC will have w masks (in the worst case). However, in certain

cases, OVS seems to optimize for the other extreme and minimizes

lookup time at the cost of exponential space (k close to 1); we have

seen such behavior for ACLs including IPv6 address fields (cf. §5.4).

4.2 Maximize MFC Masks: Multi Headers

Next, we generalize the single-field technique to multiple fields to

get the desired exponential complexity in any TSS implementation.

Asmentioned before, an ACL that filters on the 32-bit IPv4 source

address field (w1 = 32), we can generate 32 masks and 33 entries.

For the port field (w2 = 16), the corresponding figures are 16 masks

and 17 entries, respectively. Establishing a logical OR relation, on
the other hand, between different header fields in the ACL at the

same time will in turn create an AND connection on the drop rule.
Considering our example ACL in Fig. 4, this means that a packet

can be dropped only if both HYP is not 001 and HYP2 is not 1111.
We can see that the most space-efficient way to test the deny case

individually for the HYP field is to test each bit one by one and

similarly for HYP2 field. However, collectively testing the two fields
involves testing each combination of bit positions in the two fields

(cf. Fig. 5), yielding 3 ∗ 4 + 1 = 13 masks with roughly the same

number of entries
1
. Observe that the first allow rule of the ACL is

represented in the MFC in the same way, which does not apply for

the second allow rule (hence +1 in the above equation).

Theorem 4.2. Given an ACL on n header fields of bit-widthw1,
w2, . . ., wn , comprising n allow-rules, each exact-matching on a
single header field, plus a lower-priority DefaultDeny policy, no TSS
construction can achieve better than

O

(∏
i
ki

)
time-complexity and

O

(∏
i
ki

(
2

wi
ki − 1

))
space-complexity

for any 1 ≤ ki ≤ wi , i ∈ {1, . . . ,n}.

Here, again the formula allows to tune the space–time tradeoff,

but this time separately for each field through setting 1 ≤ ki ≤ wi .

For the extreme choice ki = 1 for all i , we again get optimal time

1
Note that if the second rule (in Fig. 4) also filtered on HYP, we would still have roughly
the same masks; only allowance would change.

HYP HYP2 action
001 * allow
* 1111 allow
* * deny

Figure 4: ACL on 2 headers

HYP HYP2 Action
#1 001 **** allow
#2 1** 1111 allow
#3 01* 1111 allow
#4 000 1111 allow
#5 1** 0*** deny
#6 01* 0*** deny
#7 000 0*** deny
... deny
#14 1** 1110 deny
#15 01* 1110 deny
#16 000 1110 deny

Figure 5: Corresponding

MFC (keys are masked)

(O(1) time with O(2
∑
i wi) space) and ki = wi yields optimal space

(O(
∏

i wi) for both time and space), and different settings for ki
again provide different tradeoffs. In practice, we observed again

OVS to lean towards space minimization yielding the required

multiplicatively scaling O(
∏

i wi) space- and time-complexity.

5 CO-LOCATED TSE

In this section, we discuss the Co-located TSE attack in detail. First

we show the basic idea behind generating an “adversarial” packet

sequence corresponding to the installed ACL. Then, we present

a typical ACL tenants usually deploy for their services, and we

apply our technique to show the efficiency of Co-located TSE. In
particular, we evaluate Co-located TSE in various synthetic and live

testbeds, and we show to what extent the tuple space explosion

phenomenon can degrade the overall performance with considering

several hardware offloading techniques.

5.1 Adversarial Packet Trace

As discussed in §3, to practically spawn the MFC entries, we need

a specially crafted packet sequence. Note that such packets are

completely legitimate and benign just as the useful user traffic.

Taking the example ACLs in §4.1 and §4.2, first we consider only a

single header, then we turn to the case of multiple headers.

Single Header. We found the following packet trace generation

strategy against the single header scenario to work well in practice:

generate a packet that matches the allow rule, then add a packet

with each of the relevant bits inverted one-by-one. In Fig. 1, this

results in the following HYP header fields: { 001, 101, 011, 000 }.
It can be seen that packets with these headers will exactly result in

the 4 MFC entries and 3 masks shown in Fig. 3.

Multiple Headers. We generalize from the single-field case to the

multi-field case with minimal modification. Consider the extended

sample ACL in Fig. 4. First, create the HYP list LHYP according to the
bit-inversion method, then create a similar list LHYP2 for the HYP2
field, and then generate a packet with setting HYP and HYP2 from
the outer product of the lists LHYP × LHYP2. Ignoring the packets

for the second allow rule that do not generate new masks (see

entries #2 − #4 and #14 − #16 in Fig. 5), this technique gives exactly

4 ∗ 3 + 1 = 13 packets and the same number of MFC masks. We

omit the formal proofs here for brevity.

5.2 Practical ACLs

The effectiveness of the attack depends on the number of MFC

masks the attacker can spawn in the data plane, which in turn

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

Rule id ip_src tcp_src tcp_dst action
#1 * * 80 allow
#2 10.0.0.1 * * allow
#3 * 12345 * allow
#4 * * * deny

Figure 6: Simple ACL of a full-blown TSE attack.

Table 1: HW/SW and orchestrator versions.

Property Synthetic OpenStack Kubernetes

CPU Intel Xeon E5-2620 v3 2 x Intel i5-6300U

Memory 64GB 2 x 2GB

NIC Intel X710 Intel 82598 virtio

SmartNIC Mellanox CX-4 – –

Kernel 4.13.13-1 4.4.0-112 4.4

OVS 2.9.2 (stable) 2.9.90 (unstable) 2.7

Orchestrator – OpenStack Queens Kubernetes 1.7

depends on the number, bit-width and the values of the header

fields the installed network policies match on. Correspondingly,

as a full-blown attack we can target 3 IP header fields out of the

possible IP 5-tuple: the source IP address, the source transport port,

and the destination port
2
(see Fig. 6). Accordingly, we distinguish

between several use cases, each with its own set of targeted header

fields and its own expected effectiveness (the numbers are for IPv4).

First, in case of Baseline, there is only one allow rule (apart

from the simple DefaultDeny rule) in the flow table, which allows

the tenant’s service to be reached (e.g., rule #1 in the ACL in Fig. 6).

Accordingly, there is one benign traffic flowmatching on that single

rule only, and no malicious traffic enters the system; #MFCmasks: 1.

This scenario represents the full capacity of the switch in normal

operation and serves as a baseline to measure service degradation

for the rest of the use cases.

In case of Dp, we attack on a single header field, the 16-bit

destination port. Accordingly, the ACL contains only Rule #1 and

Rule #4 from the full-blown setup of Fig. 6, but now adversarial

traffic against rule #1 is sent; #MFC masks: 16. Then, we gradually

increase the number of headers and combine them, starting from

the basic multi-field attacks of SpDp and SipDp, targeting both port

(#MFC masks:∼ 16
2 = 256), and the IP source address with the

destination port fields (#MFC masks: ∼ 32 ∗ 16 = 512), respectively.

Finally, as a full-blown attack, in SipSpDp we target all rules in

Fig. 6 (#MFC masks: ∼ 8200). Note that in all cases the traffic traces

also include some additional random noise added to "unimportant"

header fields (e.g., varying TTL) to increase the entropy hence using

up the microflow cache.

5.3 Environments and Setup

Next, we present the setup used to evaluate Co-located TSE attack

in various live environments. First, we present synthetic measure-

ments on a standalone switch to show that the TSS implementation
in OVS is vulnerable to TSE attacks. We also demonstrate that even

if the TSS implementation is offloaded to the hardware, such a system

is still vulnerable. Then, we study the performance of OVS when

used as a hypervisor switch in a real OpenStack and a Kubernetes

environment (small in-house testbeds for ethical reasons). Table 1

lists the software and hardware configurations used for the tests.

In these environments, we measure the raw throughput of a

standalone OVS by simulating the pipeline that would arise in a

2
Non-IP packets not destined to the service will never reach the hypervisor.

Figure 7: Simplified cloud infrastructure model and

overview of Co-located TSE (thin dot-dashed purple line)

and General TSE (thick red dashed line) attacks.

real cloud deployment. We created a simplified cloud infrastructure

consisting of a small data center (DC) having 2 servers hosting the

tenants’ workloads (see Fig. 7). In particular, the victim has a pub-

licly available web service (V1 in Server 1), which s/he has installed

an ACL (ACL-V) for. Furthermore, the victim also has another ser-

vice (V2) used as a backend service of V1 scheduled to Server 2.

On the other hand, the attacker also has a leased resource (A1)

co-located with V1 in Server 1. Similarly, the attacker also defines

an ACL (ACL-A) for his/her own service (again, A1). However, in

this case the attacker installs the ACL used for the full-blown TSE

attack (cf. Fig. 6), and will send a corresponding packet sequence

to it in order to populate the MFC with an excess amount of masks;

hence potentially degrading the quality of services of other tenants’

(i.e., V1 in this case). Furthermore, since the attainable number of

masks is known, measurements do not require multiple runs.

5.4 Synthetic tests

Here, similarly to [59], our simplified DC consists of a system-

under-test (SUT) which runs OVS acting as a hypervisor for two

KVM virtual machines (Server 1), connected back-to-back to a sim-

ilar “test” machine (Server 2). Instead of having a third machine

for the incoming user traffic, for brevity, we only run an iperf3

session between V1 and V2 (cf. Fig. 7). This represents the “useful”

benign traffic (e.g., frontend – backend communication), whose

performance degradation will demonstrate the collateral damage.

Furthermore, the attacker, from which we generate the malicious

traffic (via replaying a pcap file like in [19]), is also cast to Server 2

in a second VM
4
. The attack traffic, furthermore, contained the des-

tination IP address of A1. (This setup gives a conservative estimate

of the damage done; a single large "victim" flow can be handled

in TSS using only a single cache entry "ideally", while real work-

loads usually include thousands of flows requiring hundreds of

TSS entries that will compete with the attacker’s adversarial cache

entries.). The OVS flow table was bootstrapped manually according

to the ACL in Fig. 6.

Next, we show to what extent the throughput of OVS is affected

as the number of MFC masks increases; we also evaluate the effect

of several NIC driver offloading techniques.

The results when the victim generates TCP and UDP traffic

are depicted in Fig. 9a, where the x axis shows the number of

3
Even though benign traffic may consist of other types of flows (e.g., short-lived), they

are out of scope of this study.

4
Note, however, that in real deployments the attack might cannot be launched com-

pletely within a DC due to the IP spoofing protection mechanism of the CMS (e.g.,

OpenStack) that prevents attacks based on this header field.

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

0 30 60 90

0

1

2

3

4

5

6

7

8

9

10

t1 t2

Time [sec]

T
h
r
o
u
g
h
p
u
t
[
G
b
p
s
]

Victim 1

Victim 2

Victim 3

Victim SUM

Attacker

(a) Results for 3 concurrent TCP victim flows.

0 30 60 90 120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t1 t2 t3

Time [sec]

T
h
r
o
u
g
h
p
u
t
[
G
b
p
s
]

Victim

Attacker

(b) OpenStack results for the SipDp scenario.

10

100

1k

10k

#
m
e
g
a
fl
o
w

megaflows

0 30 60 90 120 150

0

0.2

0.4

0.6

0.8

1.0

t1 t2 t3 t4

Time [sec]

T
h
r
o
u
g
h
p
u
t
[
G
b
p
s
]

Victim

Victim (mean)

Attacker

(c) Kubernetes results for the SipSpDp scenario.

Figure 8: Results for synthetic (a), OpenStack (b) and Kubernetes (c) scenarios, respectively

MFC masks, while the y axis plots the corresponding throughput;

note that both axes are in log scale. In order to easily realize the

maximum number of MFC entries attainable in each use case, we

note the x tick labels for numbers 17, 260, 516 and 8200 by Dp,

SpDp, SipDp, and SipSpDp, respectively. We observed dramatically

different effects depending on various settings of the NIC driver. In

particular, jumbo frames and generic transmit/receive offload support
(GRO ON) let the NIC to assemble many small TCP packets into a

single large TCP buffer [59], reducing the effective traffic rate seen

by OVS to a couple of thousand pps which it can process efficiently

even when the TSS classifier has excess masks. Furthermore, we

also enabled full hardware offloading (FHO ON) via our Mellanox

CX-4 NIC, which gave a huge boost to the overall performance

(∼ 30 Gbps). However, the TSS classifier still remains vulnerable

resulting in a significant performance drop as the number of MFC

masks increases above 200. For UDP, these settings take no effect

and performance degradation is clearly visible in all scenarios.

Our observations are as follows: i) 17 masks (max. in Dp use

case) are sufficient to reduce the effective throughput to roughly

97%, 88%, and 53% of the Baseline with GRO ON, FHO ON, and

GRO OFF, respectively. As the ii) number of masks reaches 260

(max. in SpDp), these numbers are as follows: 95%, 43%, and 10%,

respectively. In case of having iii) more than 500 masks in the MFC

(e.g., in SipDp), the increased packet classification time reduces

the full capacity to its 76%, 29%, and 4.7%, respectively. Finally, iv)
spawning more than 8000 masks (attainable in case of SipSpDp)

result in virtually a complete denial of service attack in each case

as the throughput drops down to 3.9%, 2.1%, and 0.2%, respectively.

Hereafter, we present only the results for TCP with GRO OFF.

To present the increased packet processing time, the secondary

y axis shows the flow completion time of 1GB TCP traffic with

GRO OFF as the number of MFC masks grows; again, note the log

scale. It can be seen that, on average, the flow completion time only

increases half as high as the number of MFC masks.

Nevertheless, this experiment clearly marks the vulnerability of

TSS to low-bandwidth DoS attacks.

Next, Fig. 8a gives the results for 3 parallel victim TCP flow in the

SipDp scenario with TCP offloading disabled. In this benchmark, the

attacker is active from t1 until t2 injecting 100 packets per second
(50 Kbps), reducing victims’ aggregate traffic rate from 9.7 Gbps

to below 0.5 Gbps. Observe the delay in the recovery of the victim

rate that returns to full rate only after 10 seconds after t2; this is

due to the 10 sec idle MFC timeout in OVS, keeping the attacker’s

entries alive for an extended time.

The extent and type of the damage varies on a case by case basis,

depending on the type of ACLs injected, the OVS version, the NIC

configuration, etc. For instance, when we apply the SipDp attack

vector over IPv6 we find that OVS applies the “wildcarding” TSS

entry generation technique only to the TCP destination port field

but seems to handle the IPv6 source address using exact match-

ing, which can result in only a handful of masks but hundreds

of thousands of MFC entries (irrespectively of the TSE method).

Hence, in this scenario the adversarial effect manifests itself not

in the slowdown of the victim traffic but rather in excess memory

and CPU consumption, with OVS taking up 8 CPU cores trying to

uselessly reclaim megaflow memory occupied by the excess TSS

entries. Restricting OVS to just 2 CPU cores then reduces victim

traffic to 5% of its nominal rate.

Next, we evaluate the Co-located TSE attack in two smaller real

testbeds (in-house for ethical concerns): OpenStack and Kubernetes.

5.5 OpenStack

Our OpenStack testbed (cf. Table 1 for details) uses the OVN integra-

tion [72]; this configuration is known to exhibit superior network

performance compared to the default [4]. Workload isolation be-

tween the attacker and the victim was enforced by deploying the

corresponding VMs using different OpenStack tenants.

The CMS API only allows the SipDp scenario, for which the

results are given in Fig.8b; here, the attacker starts sending at the

beginning of the benchmark at 100 pps and stops in the 60-th second

only to restart 30 seconds later; the victim joins with a full-rate

UDP iperf session at the 30-th second. In line with the synthetic

setup, in the OpenStack testbed we again see a substantial (more than
90%) useful performance reduction during the time interval when both
the attacker and the victim are active. Again, the victim recovers 10

seconds after the attacker stops sending. Curiously, the re-activation

of the attacker causes only a minor damage to the victim rate (about

10% drop); it seems that the attack is effective only against newly

established target flows but causes minor harm to long-lasting flows

already active at the moment when the attack starts. We observed

this behavior consistently in this version of OpenStack; we have

contacted the OVS authors regarding this behavior of this specific

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

unstable version of OVS, but the reasons were mostly unknown

and migrating to a stable version was suggested.

5.6 Kubernetes

Our setup uses the OVN integration [68] and the topology is the

same as in the synthetic tests; one server hosts the attacker and the

victim source and another hosts the sinks, both provisioned in sepa-

rate vagrant boxes connected by a virtio network link supporting 1

Gbps rate. Here, we could use the SipSpDp attack scenario yielding

the full ACL in Fig. 6; since Kubernetes/OVN currently does not

support the full semantics of Calico network policies we injected

the source port filtering rules manually via the CLI.

The results are shown in Fig. 8c. Initially no “malicious” ACL

is set up, i.e., when the victim starts an iperf session it quickly

reaches 1Gpbs rate. The attacker starts sending at t1 at 1, 000 pps
(causing a minor glitch in the victim rate) and then injects the ACL

in Fig. 6 at t2, triggering thousands of MFC entries in the OVS data

plane. In response, the victim rate rapidly drops by 80%. Then, at

t4, the attacker increases its sending rate to 2, 000 pps, resulting in
a full denial of network service to the victim. From that point, the

victim rate drops close to 0 for 30 seconds, during which OVS can

hardly push any useful packets through the data plane because of

the malicious activity of the attacker. During our evaluations, we

have seen similar cases of full-blown DoS under various scenarios,

with cases when iperf could not even establish a new TCP session

for extended periods of time.

6 GENERAL TSE

Next, we scrutinize the efficiency of the TSE attack when having co-

located resources and knowledge about the ACLs are not required.
Such alleviated requirements make General TSE attack more appeal-

ing as any arbitrary service, i.e., ACL, can be attacked. However,

this comfort comes at a price that the attack itself requires more

effort (in terms of packet rate) to even approximate the efficiency

of Co-located TSE yet keeping the attack rate low (≪ volumetric).

Correspondingly, in this section we first discuss how to generate

a packet trace against an unknown ACL. Then, we show lower

bounds on the estimated number of MFC masks we can achieve in

all use cases against the ACL in Fig. 6), which we underpin later

with practical measurements.

6.1 Adversarial Packet Trace

To target an unknown ACL, a naïve approach would generate se-

quentially all possible packets for the given header fields in order

to spawn as many MFC masks as possible. Clearly, such approach

would easily result in a volumetric attack since considering even

the case of SipDp, the required successful attack rate would be

∼ 2.9 p(eta)bps. Therefore, we need a better heuristic algorithm

that tries to approximate the attainable number of MFC masks.

Randomization has proven to be efficient many times in practice

(e.g., evolutionary and genetic algorithms, runtime analysis, con-

vergence [9]), thus we adapt this approach to our packet trace

generation. First, we analyse what are the chances that a packet

with random (but legitimate) header will spawn an MFC entry.

Then, we show what is the expected number of MFC masks for a

given number of random packets sent to an unknown ACL.

Single Header. One can see in Fig. 3 that for a header length h the

probability that one packet will spawn a specific entry in the MFC

is pk (MFC) = 2
k

2
h , where k is the number of wildcarded bits the

given MFC entry has; e.g., #2 entry in Fig. 3 p2(MFC) = 2
2

2
3
= 0.5.

Generally, the probability that from n randomly generated packets

there will be at least 1 packet that sparks an MFC entry for a given

k is:

p(k ,n)(MFC) = 1 − (1 − pk (MFC))n . (1)

Accordingly, the expected value of the number of MFC masks can

be formalized as follows:

E(k ,n)(MFC) =
h∑

k=0

Ck ∗ p(k ,n)(MFC), (2)

where Ck notes the number of different MFC entries for a given k .
Multiple Headers. Eq. 1 and Eq. 2 can be generalized to multiple

headers; one only needs to pay attention to the number of possible

different MFC mask combinations (Ck) for a given k , which heavily

depends on the width of the header the first flow rule matches on

(see Appendix for more details).

Note that for each use case all related header fields were random-

ized (e.g., for SipDp the packet trace contained packets with random

source IP and destination port). Similarly to Co-located TSE, the
traces included additional random noise to exhaust the microflow
cache. Recall, it is usually used up in normal operation.

6.2 Synthetic Tests

Next, we show to what extent a practical random packet trace

generation is in par with the expected values above.

Note that in our evaluation we used the same ACLs as well as the

same testbed presented in §5, however, the attacker targets the ACL

installed by the victim (ACL-V). For brevity, we only present the

results for the synthetic tests, but note that as long as the General
TSE attack achieves the same amount of MFC masks as Co-located
TSE, the effects are the same irrespectively to the environment.

Results are depicted in Fig. 9b, where on the x axis the number

of different random packets is shown, while the y axis depicts

the expected (E) and measured (M) (averaged over 100 runs) MFC

masks for each use case. Since the expected values are dominated

by the width of the header the first flow rule of the ACL matches

on (cf. §6.1), the difference between SipDp and SpDp was negligible;

hence the latter is removed for brevity.

Observe that the more different header fields the ACL consists

of the more MFC entries can be spawned with the same number of

random packets. In particular, the maximum attainable MFC masks

(with 50, 000 packets) are approx. 16, 121, 122, and 581 in case of

Dp, SpDp, SipDp, and SipSpDp, respectively. In terms of service

degradation, these results mean that General TSE can reduce the

full capacity with GRO OFF to 52% (97% with GRO ON, 88% with

FHO, 60% with UDP), 12% (96% with GRO ON, 87% with FHO, 15.8%

with UDP), and 1% (73.5% with GRO ON, 25.5% with FHO, 3.25%

with UDP), respectively.

Recall that inCo-located TSE themaximum attainableMFCmasks

(17 for Dp, 256 for SpDp, 512 for SipDp, and 8195 for SipSpDp,

respectively) require the same amount of packets. This means that

for the Dp use case, General TSE can be as good as Co-located TSE in

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

1

5

30

600

F
l
o
w
C
o
m
p
l
e
t
i
o
n
t
i
m
e
[
s
e
c
]

1GB TCP (GRO OFF)

1
1
0
D
p

1
0
0

S
p
D
p

S
ip
D
p

1
0
0
0

4
0
0
0

S
ip
S
p
D
p

0.01

0.2

0.5
1

5

10

30

Number of MFC masks

V
i
c
t
i
m
’
s
t
h
r
o
u
g
h
p
u
t
[
G
b
p
s
]

FHO ON (TCP)

GRO ON (TCP)

GRO OFF (TCP)

UDP

(a)

1
0
1
7

5
0
1
0
0

2
6
0
5
1
6

1
,00

0

5
,00

0

1
0
,00

0

5
0
,00

0

10

50

120

330

600

Number of packets

N
u
m
b
e
r
o
f
M
F
C
m
a
s
k
s

SipSpDp (M) SipSpDp (E)

SipDp (M) SipDp (E)

Dp (M) Dp (E)

(b)

1
0

1
0
0

1
K

5
K

1
0
K

2
0
K

5
0
K

15

50

100

150

200

250

Packet rate [pps]

C
P
U
u
s
a
g
e
[
%
]

ovs-vswitchd

(c)

Figure 9: UDP and TCP (with GRO ON/OFF and FHO ON) throughput and flow completition time on the secondary y axis of

the victim’s traffic as the number of MFC masks increases (a); Average number of the expected (E) and measured (M) MFC

masks attainable with General TSE (b); CPU usage of MFCGuard (axis x is in log scale) (c)

terms of attainable MFC masks. As Co-located TSE requires roughly

1, 000 packets (0.67Mbps) do tear down OVS in the most complex

use case, it can be seen that the same amount of random packets

in case of General TSE is sufficient to degrade the useful capacity

to 72.8% with GRO OFF (99.15% with GRO ON, 91.25% with FHO,

77.28% with UDP), 25.4% with GRO OFF (96.8% with GRO ON,

87.95% with FHO, 32.35% with UDP), and 11.7% with GRO OFF

(95.8% with GRO ON, 87% with FHO, 12.5% with UDP) for Dp,

SpDp/SipDp, and SipSpDp, respectively.

7 DISCUSSION

The technique extends to an arbitrary number of protocol fields. Each
CMS imposes its own set of limitations on the possible ACLs that

can be installed and the extent to which different packet header

fields can be considered: by default, OpenStack and Kubernetes

allow ingress policies to filter only on the source IP addresses and

the destination port (TCP or UDP) [15, 70]. This gives a comfortable

32∗16 = 512 excessmasks in theMFC. Calico (a Kubernetes network

plugin [65]) allows ingress security policies to also filter on the

source port, yielding possibly 8192 masks (already enough for a

full-blown DoS) to which egress policies introduce the destination
IP address as well (∼ 200 thousand masks).

All cloud deployments implementing ACLs in OVS are affected. OVS
is extensively used in cloud-based systems (e.g., it is the most widely

used hypervisor switch in OpenStack) and it increasingly takes

over the responsibility of enforcing ACLs from iptables due to

the raw performance edge, standard support, and ease in man-

agement [56]. The TSE attack is effective over the OVN backend

for OpenStack Neutron [72], OpenStack/OpenDaylight [69], Open-

Stack/ONOS [67], and in Kubernetes/OVN as demonstrated in §5.5

and §5.6. Note, however, that default installations are not directly

affected as ACLs are implemented in iptables, but this architec-
ture tends to become legacy soon [4]. Furthermore, major cloud

providers do not seem to be affected: for instance, Microsoft Azure

does not use OVS in the AccelNet network virtualization frame-

work [28] and, even though the Google Cloud Platform does include
OVS in the Andromeda data plane, this seems to be a significantly

stripped down version [21]. In any case, we did not perform specific

tests in public cloud providers’ DCs for obvious ethical reasons.

TSE generalizes beyond OVS. TSE exploits an algorithmic complex-

ity deficiency in the venerable TSS scheme. Therefore, deployments

relying on the TSS scheme for packet classification, e.g., Open-

Stack/Networking-vpp [71], Contiv/VPP Kubernetes [25], Xen/

HyperSwitch [59], Netronome SmartNIC [49], might be also af-

fected; the evaluation has bee left for a future study.

Furthermore, there is considerable base of network-function vir-

tualization [33, 48], cloud gateway/load-balancer [48], campus and

enterprise networks [47] that use TSS scheme for packet classifier

to implement non-trivial packet processing pipelines. If any of the

flow tables in these deployments contain the above adversarial

pattern, then the DoS attacks presented here are effective.

8 MITIGATION

The above results suggest that TSE can be particularly damag-

ing. Accordingly, we initiated a responsible disclosure process by

providing code and methodology to reproduce the synthetic tests

to the corresponding security teams [11, 17, 18]. Besides, several

immediate yet impractical remedies might help: (i) deploying or

offloading ACL implementations to a different hypervisor switch

(e.g., [34, 48, 78]) or to the (ii) high-performing gateway appliance

(e.g., [6]), (iii) switching the MFC completely off, or (iv) enabling ad-
vanced flow caching via DPDK-based OVS datapath [23]. However,

each of the above has the following corresponding disadvantage: in

case of (i) other implementations might suffer from the same attack

(e.g., [25, 26, 74]) or (ii) they do not help against attacks initiated

within the DC, for (iii) MFC has been the biggest performance im-

provement so far [55], and for (iv) the feature that may prevent the

attack is available in select datapaths.

Forcing the use of jumbo frames and TCP buffers (cf. §5.4) can
substantially decrease the effective packet rate, however packets

coming from outside might be limited to the default MTU size. And

they do not cover attack against other traffic; e.g., UDP, which is

the underlying transport protocol in QUIC [66].

MFCGuard. As a more customized mitigation technique we de-

veloped MFCGuard, which monitors and modifies the MFC—if the

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

number of masks exceed a certain threshold, it looks for patterns

corresponding to a possible TSE attack (cf. §3) in every 10 seconds,

and wipes out those entries accordingly. We observed that monitor-

ing (and modifying) the MFC has no overhead on the performance.

In essence, removing an entry from the MFC means that matching

packets will be processed in the slow path again. Since the slow

path would spark the same MFC entries again, the idea behind

MFCGuard was to constantly keep those entries out of the fast path.

In practice, however, we observed that once anMFC entry is deleted

then it will never be sparked again, i.e., matching packets will al-

ways be processed by the slow path. Such undesired, unexpected

and undocumented behavior [12] can have serious performance

penalties; although MFC entries can be manually re-injected.

There are several requirements MFCGuard needs to meet: (i) en-
tries covering the useful traffic should never be deleted. Further-

more, (ii) according to the available resources, we can only remove

select flows from the MFC to find a balance between the maximum

performance of the fast path and the increased resource utilization

by the slow path; both impacting the overall quality of the run

services. Due to requirement (i) MFCGuard will only remove entries

with drop action! With this simple yet important requirement, only
adversarial packets will be subjected to the slow path, keeping the

fast path accelerated for the useful traffic flows (cf. Alg. 2 in §11.4).

In our current implementation, we have therefore focused on (i),
leaving (ii) for future work.

We evaluated the efficiency of MFCGuard in all use cases (by

deleting all drop rules) and observed that once the MFC is “cleaned”,

the performance of the victim’s traffic goes back to its baseline. As

the slow path is becoming much more involved, we evaluated the

system’s load in such cases. Results are depicted in Fig. 9c, where x
and y axes show the attack rate and the corresponding CPU usage

of the slow path daemon (ovs-vswitchd), respectively.
It can be seen that as long as the attack rate is less than 1, 000 pps

(< 1 Mbps) the slow path only consumes 15% of the CPU; recall, this

packet rate is enough to bring down OVS in case of Co-located TSE).
However, when the packet rate is 10, 000 pps, the CPU load jumps

up to ≈ 80% (this rate in case of General TSE would be enough

to degrade the full capacity to 10%). We can conclude that our

current MFCGuard implementation is already capable of efficiently

mitigating both TSE attacks as long as the attacking rate is low.

If the attack rate is much above 10, 000 pps, the attack becomes a

volumetric attack, for which there are multiple solutions to detect

and handle (e.g., excess amount of packets and over-provisioning).

9 RELATEDWORK

Whether or not to virtualize services is a complicated questionmany

enterprises are facing today [24]; in a survey, 73% of responders

said that security is a top challenge holding back cloud adoption

[62], with the possibility of unmediated sharing and communica-

tions between different tenants’ workloads being among the major

concerns [53]. Such unmediated tenant-to-tenant interaction might

be initiated by a malicious user by first launching a co-residency

attack in order to co-locate a virtual machine with the target ten-

ants’ virtual machines on the same physical server [75], and then

exploiting a side-channel effect [40, 44] to eavesdrop on sensitive

information [22, 60].

Direct attacks on the cloud network infrastructure are less

known; there has been work on fuzzing the data plane with con-

siderable success [51, 73] and compromising SDN controllers [7].

Denial of service using algorithmic complexity attacks [2, 14, 16, 54]

on the network data plane usually works by exploiting a vulnerable

algorithm/data structure that is already in the targeted binary; e.g.,

[77] shows cache-collision attacks against the Linux IP stack and

[20] targets stateful firewalls. Here, we showed a vulnerable data

structure in the TSS scheme heavily used for packet classification

in hypervisor switches. We showed that a typical ACL can be the

vulnerable target itself in the data plane. Our finding can be ex-

ploited either remotely from the public Internet, or leasing a single

virtual machine deployed in the cloud; detection and prevention

techniques for algorithmic complexity attacks (see e.g., [5, 38, 54])

do not seem effective against it. Although, a mitigation technique

for an algorithmic complexity attack in DPI engines [3] uses similar

approach as our MFCGuard: a devised algorithm is used, which has a

constant (but less than normal) throughput regardless of the input.

The authors’ aim is to dynamically shift between algorithms for

normal and malicious input. In contrast, MFCGuard does not need to
change algorithms at all, and always provides the highest attainable

throughput regardless of the low-rate input.

10 CONCLUSION

Highly efficient and resilient packet classification is crucial to many

security primitives particularly in a virtualized environments. In

this paper, we investigate to what extent the TSS algorithm used in

many software switches is vulnerable against low-rate DoS attacks.

Our TSE attack exploits the fundamental space/time complexity of

the TSS algorithm, and degrades the switch performance to 12%

with low attack rate (0.7 Mbps). We show that if an adversary has

knowledge of the used classification policies, she can virtually bring

down the packet classifier with the same attack rate. One key aspect

of our TSE attack is that it is hard to detect the attack as it does

not uses any specific traffic pattern but some random packets. Fur-

thermore, since we exploit a vital complexity characteristic, there

seems to be no complete mitigation technique, unfortunately. As a

short-term solution, we propose MFCGuard, a monitoring system

that via carefully managing the entries in the tuple space can keep

packet classification fast.

ACKNOWLEDGEMENTS

This research is supported by the National Research Foundation,

Prime Minister’s Office, Singapore under its Corporate Labora-

tory@University Scheme, National University of Singapore, and

Singapore Telecommunications Ltd.

This research has also been supported by European Cooperation

in Science and Technology (COST) Action CA 15127: RECODIS

– Resilient communication and service, the UK Engineering and

Physical Sciences Research Council (EPSRC) projects EP/N033957/1,

and EP/P004024/1.

G. Rétvári has been supported by project no. 123957, 129589 and

124171 with the support provided from the National Research, De-

velopment and Innovation Fund of Hungary under the FK-17, KH-18

and K-17 funding schemes.

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES

[1] A Linux Foundation Collaborative Project. Production Quality, Multilayer

Open Virtual Switch. http://www.openvswitch.org/, Accessed: June 2019.

[2] Afek, Y., Bremler-Barr, A., Harchol, Y., Hay, D., and Koral, Y. Making DPI

engines resilient to algorithmic complexity attacks. IEEE/ACM Transactions on
Networking 24, 6 (2016), 3262–3275.

[3] Afek, Y., Bremler-Barr, A., Harchol, Y., Hay, D., and Koral, Y. Making dpi

engines resilient to algorithmic complexity attacks. IEEE/ACM Transactions on
Networking 24, 6 (December 2016), 3262–3275.

[4] Ajo, M., Graf, T., Lazzaro, I., and Pettit, J. Taking security groups to ludicrous

speed with OVS. In OpenStack Summit (2015).
[5] Alam, M. J., Goodrich, M. T., and Johnson, T. J-Viz: Finding algorithmic

complexity attacks via graph visualization of Java bytecode. In IEEE Symposium
on Visualization for Cyber Security (2016), pp. 1–8.

[6] Amazon Web Services. Elastic Load Balancing features. https:

//aws.amazon.com/elasticloadbalancing/features/#Details_for_Elastic_Load_

Balancing_Products, Accessed in Jun 2019.

[7] Antikainen, M., Aura, T., and Särelä, M. Spook in your network: Attacking

an SDN with a compromised OpenFlow switch. In NordSec (2014), pp. 229–244.
[8] Arins, A. Firewall as a service in sdn openflow network. In 2015 IEEE 3rd

Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)
(Nov 2015), pp. 1–5.

[9] Auger, A., and Doerr, B. Theory of Randomized Search Heuristics. WORLD

SCIENTIFIC, 2011.

[10] Baboescu, F., Singh, S., and Varghese, G. Packet classification for core routers:

Is there an alternative to CAMs? In Int. Conf. Comput. Commun. (Apr 2003),
pp. 53–63.

[11] Ben Pfaff. OVS Orbit podcast. https://ovsorbit.org/episode-67.mp3, 2018.

[12] Ben Pfaff. [ovs-discuss] ovs-dpctl del-flow works strange. Mailing list

archive, https://mail.openvswitch.org/pipermail/ovs-discuss/2019-June/048887.

html, 2019 June.

[13] Casado, M., Koponen, T., Moon, D., and Shenker, S. Rethinking packet for-

warding hardware. In HotNets (2008).
[14] CheckMarx. Regular expression Denial of Service: ReDoS, 2017. https://www.

owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS.

[15] Cloud Native Computing Foundation. Network Policies. https://kubernetes.

io/docs/concepts/services-networking/network-policies.

[16] Crosby, S. A., and Wallach, D. S. Denial of service via algorithmic complexity

attacks. In USENIX Security (2003), pp. 3–3.

[17] Csikor, L., and Rétvári, G. The discrepancy of the megaflow cache in ovs. In

Open vSwitch Fall Conference (Club Auto Sport, Santa Clara, CA, 2018).

[18] Csikor, L., Rothenberg, C., Pezaros, D. P., Schmid, S., Toka, L., and Rétvári,

G. Policy injection: A cloud dataplane dos attack. In Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos (New York, NY, USA, 2018),

SIGCOMM ’18, ACM, pp. 147–149.

[19] Csikor, L., Szalay, M., Sonkoly, B., and Toka, L. NFPA: Network function

performance analyzer. In IEEE NFV-SDN, Demo Track (2015), pp. 17–19.

[20] Czubak, A., and Szymanek, M. Algorithmic complexity vulnerability analysis

of a stateful firewall. In ISAT (2017), pp. 77–97.

[21] Dalton, M., et al. Andromeda: Performance, isolation, and velocity at scale in

cloud network virtualization. In USENIX NSDI (2018), pp. 373–387.
[22] Delimitrou, C., and Kozyrakis, C. Bolt: I know what you did last summer... in

the cloud. In ASPLOS (2017), pp. 599–613.
[23] DPDK. Membership Library. https://doc.dpdk.org/guides/prog_guide/member_

lib.html.

[24] et al., T. K. Network virtualization in multi-tenant datacenters. In NSDI (2014),
pp. 203–216.

[25] FD.io. Contiv/VPP Kubernetes Network Plugin. https://fdio-vpp.readthedocs.io/

en/latest/usecases/contiv/K8s_Overview.html.

[26] FD.io. VPP - Vector Packet Processing. https://docs.fd.io/vpp/19.01/index.html.

[27] Feldman, A., and Muthukrishnan, S. Tradeoffs for packet classification. In

INFOCOM (2000), vol. 3, pp. 1193–1202.

[28] Firestone, D., et al. Azure accelerated networking: SmartNICs in the public

cloud. In USENIX NSDI (2018), pp. 51–66.
[29] Gobriel, S., and Tai, C. OvS Lookup Optimization Using Two-Layer Table

Lookup. In Open vSwitch Fall Conference (2016).
[30] Gupta, P., and McKeown, N. Packet classification on multiple fields. In SIG-

COMM (1999), pp. 147–160.

[31] Gupta, P., and McKeown, N. Algorithms for packet classification. IEEE Network
15, 2 (2001), 24–32.

[32] Gupta, P., and McKeown, N. Algorithms for packet classification. Netwrk. Mag.
of Global Internetwkg. 15, 2 (2001), 24–32.

[33] Intel. Network function virtualization: Quality of Service in Broadband Remote

Access Servers with Linux and Intel architecture. https://networkbuilders.intel.

com/docs/Network_Builders_RA_NFV_QoS_Aug2014.pdf.

[34] ioVisor. eXpress Data Path, 2016. https://www.iovisor.org/technology/xdp.

[35] Istio. Authentication Policy, 2018. https://istio.io/docs/reference/config/istio.

authentication.v1alpha1.

[36] Istio. Ingress Controller, 2018. https://istio.io/docs/tasks/traffic-management/

ingress.html.

[37] Istio. Traffic Routing, 2018. https://istio.io/docs/reference/config/istio.

networking.v1alpha3.

[38] Khan, S., and Traore, I. A prevention model for algorithmic complexity attacks.

In DIMVA (2005), pp. 160–173.

[39] Kim, C., Caesar, M., Gerber, A., and Rexford, J. Revisiting route caching: The

world should be flat. In PAM (2009), pp. 3–12.

[40] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,

S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre Attacks: Exploiting

Speculative Execution. ArXiv e-prints (Jan. 2018).
[41] Kogan, K., et al. SAX-PAC: scalable and expressive packet classification. In

SIGCOMM (2014), pp. 15–26.

[42] Kuzmanovic, A., and Knightly, E. W. Low-rate tcp-targeted denial of ser-

vice attacks: the shrew vs. the mice and elephants. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications (2003), ACM, pp. 75–86.

[43] Lim, H., Lee, N., and Lee, J. Multi-match packet classification scheme combining

tcam with an algorithmic approach. IEIE Transactions on Smart Processing and
Computing 6, 1 (Febr 2017), 27–38.

[44] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,

P., Genkin, D., Yarom, Y., and Hamburg, M. Meltdown. ArXiv e-prints (Jan.
2018).

[45] Liu, X., Cho, B., and Kim, J. Sd-ovs: Syn flooding attack defending open vswitch

for sdn. In WISA (03 2017), pp. 29–41.

[46] Liu, Y., Amin, S. O., and Wang, L. Efficient FIB caching using minimal non-

overlapping prefixes. SIGCOMM Comput. Commun. Rev. 43, 1 (2013), 14–21.
[47] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,

Rexford, J., Shenker, S., and Turner, J. OpenFlow: enabling innovation in

campus networks. SIGCOMM Computer Communication Review 38, 2 (2008),

69–74.

[48] Molnár, L., Pongrácz, G., Enyedi, G., Kis, Z. L., Csikor, L., Juhász, F., Kőrösi,

A., and Rétvári, G. Dataplane specialization for high-performance OpenFlow

software switching. In SIGCOMM (2016), pp. 539–552.

[49] Netronome. Agilio OVS Software Architecture for Server-based Networking.

Whitepaper, 2018. https://www.netronome.com/media/documents/WP_Agilio_

SW.pdf.

[50] Newman, P., Minshall, G., and Lyon, T. L. IP switching – ATM under IP.

IEEE/ACM Trans. Netw. 6, 2 (1998), 117–129.
[51] Nicholas Gray, Manuel Sommer, T. Z., and Tran-Gia, P. FlowFuzz: a frame-

work for fuzzing openflow-enabled software and hardware switches. In Black
Hat (2017).

[52] The Open Networking Foundation. OpenFlow Switch Specifications v.1.4.0,
2013.

[53] Pearce, M., Zeadally, S., and Hunt, R. Virtualization: Issues, security threats,

and solutions. ACM Comput. Surv. 45, 2 (2013), 17:1–17:39.
[54] Petsios, T., Zhao, J., Keromytis, A. D., and Jana, S. SlowFuzz: Automated

domain-independent detection of algorithmic complexity vulnerabilities. In ACM
CCS (2017), pp. 2155–2168.

[55] Pettit, J. Accelerating Open vSwitch to “Ludicrous Speed. Blog post: Network

Heresy - Talses of the network reformation, 2014. https://networkheresy.com/

2014/11/13/accelerating-open-vswitch-to-ludicrous-speed/.

[56] Pfaff, B., and Davie, B. The Open vSwitch database management protocol. RFC

7047, 2013.

[57] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross,

J., Wang, A., Stringer, J., Shelar, P., Amidon, K., and Casado, M. The design

and implementation of Open vSwitch. In NSDI (2015), pp. 117–130.
[58] Pong, F., and Tzeng, N.-F. Hashing round-down prefixes for rapid packet

classification. In USENIX Annual Technical Conference (2009).
[59] Ram, K. K., Cox, A. L., Chadha, M., and Rixner, S. Hyper-Switch: A Scalable

Software Virtual Switching Architecture. In Usenix ATC (2013), p. 12.

[60] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, you, get off of

my cloud: Exploring information leakage in third-party compute clouds. In ACM
CCS (2009), pp. 199–212.

[61] Schuchard, M., Thompson, C., Hopper, N., and Kim, Y. Taking routers off their

meds: Unstable routers and the buggy bgp implementations that cause them.

Tech. rep., tech. rep., University of Minnesota, 2011.

[62] SecuritytWeek. CSA’s cloud adoption, practices and priorities survey report,

2015. http://www.securityweek.com/data-security-concerns-still-challenge.

[63] Shelly, N., Jackson, E. J., Koponen, T., McKeown, N., and Rajahalme, J. Flow

caching for high entropy packet fields. SIGCOMM Comput. Commun. Rev. 44, 4
(2014).

[64] Srinivasan, V., Suri, S., and Varghese, G. Packet classification using tuple

space search. In SIGCOMM (1999), pp. 135–146.

[65] The Calico project. https://www.projectcalico.org/.

[66] The Chromium Projects. QUIC, a multiplexed stream transport over UDP.

https://www.chromium.org/quic, 2019.

http://www.openvswitch.org/
https://aws.amazon.com/elasticloadbalancing/features/#Details_for_Elastic_Load_Balancing_Products
https://aws.amazon.com/elasticloadbalancing/features/#Details_for_Elastic_Load_Balancing_Products
https://aws.amazon.com/elasticloadbalancing/features/#Details_for_Elastic_Load_Balancing_Products
https://ovsorbit.org/episode-67.mp3
https://mail.openvswitch.org/pipermail/ovs-discuss/2019-June/048887.html
https://mail.openvswitch.org/pipermail/ovs-discuss/2019-June/048887.html
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/contiv/K8s_Overview.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/contiv/K8s_Overview.html
https://docs.fd.io/vpp/19.01/index.html
https://networkbuilders.intel.com/docs/Network_Builders_RA_NFV_QoS_Aug2014.pdf
https://networkbuilders.intel.com/docs/Network_Builders_RA_NFV_QoS_Aug2014.pdf
https://www.iovisor.org/technology/xdp
https://istio.io/docs/reference/config/istio.authentication.v1alpha1
https://istio.io/docs/reference/config/istio.authentication.v1alpha1
https://istio.io/docs/tasks/traffic-management/ingress.html
https://istio.io/docs/tasks/traffic-management/ingress.html
https://istio.io/docs/reference/config/istio.networking.v1alpha3
https://istio.io/docs/reference/config/istio.networking.v1alpha3
https://www.netronome.com/media/documents/WP_Agilio_SW.pdf
https://www.netronome.com/media/documents/WP_Agilio_SW.pdf
https://networkheresy.com/2014/11/13/accelerating-open-vswitch-to-ludicrous-speed/
https://networkheresy.com/2014/11/13/accelerating-open-vswitch-to-ludicrous-speed/
http://www.securityweek.com/data-security-concerns-still-challenge
https://www.projectcalico.org/

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Levente Csikor et al.

[67] The ONOS project. Security Group. https://wiki.onosproject.org/display/ONOS/

Security+Group.

[68] The Open vSwitch project. Kubernetes integration for OVN. https://github.

com/openvswitch/ovn-kubernetes.

[69] The OpenDaylight project. OVSDB:Security Groups. https://wiki.

opendaylight.org/view/OVSDB:Security_Groups.

[70] The OpenStack project. Manage project security. https://docs.openstack.org/

nova/pike/admin/security-groups.html.

[71] The OpenStack project. Networking-vpp. https://wiki.openstack.org/wiki/

Networking-vpp.

[72] The OpenStack project. OpenStack Neutron integration with OVN. https:

//docs.openstack.org/networking-ovn/latest.

[73] Thimmaraju, K., Shastry, B., Fiebig, T., Hetzelt, F., Seifert, J., Feldmann, A.,

and Schmid, S. Taking control of sdn-based cloud systems via the data plane. In

ACM Symposium on SDN Research (SOSR) (2018).
[74] Tollet, J. Networking-VPP: A fast forwarding vSwitch/vRouter for OpenStack.

In FOSDEM (2018).

[75] Varadarajan, V., Zhang, Y., Ristenpart, T., and Swift, M. A placement

vulnerability study in multi-tenant public clouds. In USENIX Security (2015),

pp. 913–928.

[76] Varvello, M., Laufer, R., Zhang, F., and Lakshman, T. Multi-Layer Packet

Classification with Graphics Processing Units. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies
- CoNEXT ’14 (Sydney, Australia, 2014), ACM Press, pp. 109–120.

[77] Weimer, F. Algorithmic complexity attacks and the linux networking code, 2003.

http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html.

[78] Zhou, D., Fan, B., Lim, H., Kaminsky, M., and Andersen, D. G. Scalable, high

performance Ethernet forwarding with CuckooSwitch. In CoNEXT (2013), pp. 97–

108.

11 APPENDIX

11.1 OVS cache infrastructure

The OVS flow cache infrastructure and the whole pipeline of pro-

cessing a packet through the caches all the way up to the slow path

(in case of the first packet of the flow) is shown in Fig. 10.

Figure 10: The OVS flow cache infrastructure.

11.2 Megaflow Lookup Algorithm

With the invariants (Inv(1)) and (Inv(2)) described in §3.2 is mind

we summarize a rather simplified description of the MFC lookup

algorithm implemented in the OVS fast path below:

Algorithm 1 Megaflow lookup. Input: packet header h

forM ∈ M do

lookup (h AND M) in the hash HM
if found then return cache hit

end for

return cache miss

Proof of Theorem 4.1. Let parameter k = |M| denote the

number of masks and let Bi be the set of bitpositions used by the

i-th mask. It is easy to see that the number of keys in the MFC is

minimal if Bi ∩ Bj = ∅ for 1 ≤ i < j ≤ k . In this case, to cover each

denied packet the i-th mask needs 2
bi − 1 keys (each key except

the one that refers to the allow rule), where bi is the number of

bit positions set in Bi . Thus, the number of keys in the MFC is∑
i

(
2
ki − 1

)
. Using the inequality between geometric and arith-

metic means, the expression

∑
i 2

bi
subject to

∑
i bi = w takes the

minimal value when k2
w
k . Hence, for k masks the number of keys

is at least k2
w
k − k = O(k2

w
k). □

Proof of Theorem 4.2. We focus only on the keys that refer to

deny packets. Since there is an allow rule for each field, all masks

must refer to every field on at least one position. One can see that to

minimize the number of keys these positions should be a Cartesian

product of separate solutions for the different fields. Let ki be the
number of masks considering only the i-th field, then using the

result of Theorem 4.1 we get the required result. □

https://wiki.onosproject.org/display/ONOS/Security+Group
https://wiki.onosproject.org/display/ONOS/Security+Group
https://github.com/openvswitch/ovn-kubernetes
https://github.com/openvswitch/ovn-kubernetes
https://wiki.opendaylight.org/view/OVSDB:Security_Groups
https://wiki.opendaylight.org/view/OVSDB:Security_Groups
https://docs.openstack.org/nova/pike/admin/security-groups.html
https://docs.openstack.org/nova/pike/admin/security-groups.html
https://wiki.openstack.org/wiki/Networking-vpp
https://wiki.openstack.org/wiki/Networking-vpp
https://docs.openstack.org/networking-ovn/latest
https://docs.openstack.org/networking-ovn/latest
http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html

Tuple Space Explosion: A Denial-of-Service Attack Against a Software Packet Classifier CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

11.3 Probabilities and expected values

Multiple header fields with ACL unknown. Naïvely, one might think

that for each k there is one combination where one of the headers

has k − l wildcarded bits, while the other header has l (0 ≤ l ≤ k).
However, as can be seen in Fig. 5 according to the order of the flow

rules in the flow table (cf. Fig. 4), only the first allow rule appears

in the MFC cache in the same way, i.e., with the other header fully

wildcarded. If the second flow rule was also represented in the same

way, then the MFC would violate the order-independent property
as a packet with HYP 001 and HYP2 1111 header would match on

both of the entries. Therefore, for k = l or k = 0 there is just one

combination.

Furthermore, if k is greater than the length of the shortest header

(s), then again the number of possible combinations is less (i.e., it

simply cannot hold more wildcarded bits as its length s). These
observations can be summarized as follows: for two different header

fields of length s, l (s ≤ l) : Ck = k + 2 if 0 ≤ k < s , Ck = s if
s ≤ k < l , and Ck = (s + l) − (k + 1) if l ≤ k .

Thus, the most important factor in calculating of the expected

values isCk . In the following, how its calculation can be generalized

to above 2 headers.

Assume that we havem + 1 different flow rules, wherem rules

match onm different headers with sizes of h1,h2, . . . ,hm , where h1
is the highest priority rule, while hm is the lowest one. Additionally,

the last rule ((m + 1)th) is the low priority deny rule. The entries

covering the i−1th rule contain prefix rules for the previous headers,

exact match for the ith header, and wildcard for the remaining

headers. Let fi−1(u) be the number of combinations for prefix fields

with u wildcarded bit. Then, it can be calculated by the following

convolution:

fi (k) =

min(k ,hj)∑
j=1

fi−1(k − j),

where f0(k) = 1k=0. Let fm be the same for the deny rule, and it can

calculated with the same convolution. Furthermore, letC
(i−1)
k be the

number of combinations that contain k wildcarded bits in the whole

header, then it can be calculated as C
(i−1)
k = fi−1(k −

∑m
j=i+1 hj).

Therefore, Ck =
∑m
i=0C

(i)
k .

11.4 Mitigation Algorithm

Below, we present the mitigation algorithm. First, it has two preset

thresholds (for the number of MFC masks (m_th) as well as for
the acceptable CPU overhead (c_th)) as input parameters that can

be fine-tuned according to the available resources. As indicated in

Line 1, the algorithm runs every 10 seconds according to the MFC

eviction policy. In Line 2, we check the number of masks in the

MFC (it can be acquired via commands ovs-dpctl dump-flows or
ovs-dpctl show). If the number of MFC masks is above the preset

threshold (Line 3), then for each rule in the FlowTable we look for

a pattern the TSE attack would generate (according to §4) in the

MFC (Line 4). If a pattern is found (Line 6), we remove the corre-

sponding entries from the MFC (Line 7). Each time after removing

some selected entries from the MFC, we check the increased CPU

utilization (e.g., via command top in Line 9) and if it is below the

threshold (Line 10), we keep removing MFC entries (if there are

Algorithm 2Mitigation. Input: #MFC mask threshold m_th, CPU
utilization threshold c_th

1: for every 10 second do

2: m ← checkNumberOfMasks()
3: if m > m_th then

4: for rule in FlowTable do

5: f ound ← lookPatternInMFC(rule)
6: if f ound then

7: deleteMFCEntries(rule)
8: end if

9: cpu_util ← checkCPUUtilization()
10: if cpu_util ≥ c_th then

11: return
12: end if

13: end for

14: end if

15: end for

any); otherwise the system is considered to be balanced, i.e., no

more entries from the MFC will be removed as it would cause too

much packet processing overhead in the slow path.

	Abstract
	1 Introduction
	2 Background
	2.1 Switching Stacks for Virtualization
	2.2 TSS for Fast Packet Classification

	3 Tuple Space Explosion: Overview
	3.1 Threat Model
	3.2 DoS with Excessive MFC Masks
	3.3 Two Approaches of the TSE Attack

	4 Space – Time Complexity of TSS
	4.1 Maximize MFC Masks: Single Header
	4.2 Maximize MFC Masks: Multi Headers

	5 Co-located TSE
	5.1 Adversarial Packet Trace
	5.2 Practical ACLs
	5.3 Environments and Setup
	5.4 Synthetic tests
	5.5 OpenStack
	5.6 Kubernetes

	6 General TSE
	6.1 Adversarial Packet Trace
	6.2 Synthetic Tests

	7 Discussion
	8 Mitigation
	9 Related Work
	10 Conclusion
	References
	11 Appendix
	11.1 OVS cache infrastructure
	11.2 Megaflow Lookup Algorithm
	11.3 Probabilities and expected values
	11.4 Mitigation Algorithm

