
RollBack- A New Time-Agnostic Replay Attack
Against the Automotive Remote Keyless Entry
Systems

Levente Csikor∗1,2, Hoon Wei Lim2, Jun Wen Wong†2,3, Soundarya

Ramesh4, Rohini Poolat Parameswarath4, and Mun Choon Chan4

1Institute for Infocomm Research (I2R), A*STAR, Singapore
2NCS Group, Singapore

3DSBJ Pte. Ltd., Singapore
4National University of Singapore

Abstract

Automotive Remote Keyless Entry (RKE) systems implement disposable rolling codes, making every key
fob button press unique, effectively preventing simple replay attacks. However, RollJam was proven to
break all rolling code-based systems in general. By a careful sequence of signal jamming, capturing, and
replaying, an attacker can become aware of the subsequent valid unlock signal1 that has not been used
yet. RollJam, however, requires continuous deployment indefinitely until it is exploited. Otherwise, the
captured signals become invalid if the key fob is used again without RollJam in place.

We introduce RollBack, a new replay-and-resynchronize attack against most of today’s RKE systems.
In particular, we show that even though the one-time code becomes invalid in rolling code systems,
replaying a few previously captured signals consecutively can trigger a rollback-like mechanism in the
RKE system. Put differently, the rolling codes become resynchronized back to a previous code used in
the past from where all subsequent yet already used signals work again. Moreover, the victim can still
use the key fob without noticing any difference before and after the attack.

Unlike RollJam, RollBack does not necessitate jamming at all. Furthermore, it requires signal cap-
turing only once and can be exploited any time in the future as many times as desired. This time-agnostic
property is particularly attractive to attackers, especially in car-sharing/renting scenarios where accessing
the key fob is straightforward. However, while RollJam defeats virtually any rolling code-based system,
vehicles might have additional anti-theft measures against malfunctioning key fobs, hence against Roll-
Back. Our ongoing analysis (covering Asian vehicle manufacturers for the time being) against different
vehicle makes and models using RKE implementations from NXP revealed that more than 80% of them
are vulnerable to RollBack.

Keywords: remote keyless entry, rolling code, vulnerability, replay attack, RollJam, RollBack, resyn-
chronization

∗Levente Csikor was with NCS Group when this research work started.
†Jun Wen Wong was with NCS Group during this work.
1 In this paper, the terms code and signal are used interchangeably.

1

1 Introduction

The automotive industry has undergone a tremendous evolution since the first car was made more
than a century ago. While the efficiency and versatility have been continuously evolving, since the
early 1980s, manufacturers have constantly been squeezing more and more embedded computers,
known as Electronic Control Units (ECUs), into our cars to enhance safety [1], stability [2],
diagnostics [3], and comfort [4, 5], to name a few [6]. On the one hand, this paradigm shift from
the traditional mechanical mechanisms to an all-digital control has been clearly proven beneficial.
On the other hand, computerized vehicles open up a broad set of new attack surfaces [7–14].

One of the earliest comfort-enhancing inventions is the Remote Keyless Entry (RKE) system
that eliminates the need for physical keys and allows one to remotely lock and unlock the vehicle2

merely by using a key fob. Since RKE is already present in commercial vehicles from the early
1980s [5], it has been (and still is) one of the main targets of the attackers [10, 11, 14–16]. RKE
systems use wireless radio signals, and due to the limited number of required commands (e.g.,
lock, unlock) and, most importantly, the power and resource constraints of the small battery-
operated key fobs, the communication between the key fob and the vehicle is designed to be
simple. Some deployments may use encryption to avoid eavesdropping (i.e., capture and decode
signals) or tampering attacks (i.e., “flipping” lock signals to unlocks); however, replaying signals,
even if they are encrypted, is straightforward. Today, many RKE systems still implement static
codes to control the vehicle from the key fob. Therefore, capturing an encrypted “unlock” signal
allows an attacker to replay it and access the vehicle anytime afterward.

To cope with these simple replay attacks, rolling codes, i.e., code hopping [17], have been
introduced wherein a particular code (e.g., an “unlock” code) is considered disposable, i.e., it is
only used once. In a nutshell, every button click on the key fob triggers a counter in the key fob
and in the vehicle upon reception to roll, making it valid for subsequent use in the future. Put
differently, sent codes that are used once are invalidated by the next code, effectively preventing
replay attacks (cf. Fig. 1a).

Note that a sent code can also be considered unused when the key fob has emitted the signal,
but the vehicle did not receive it. For instance, when the unlock button was accidentally pressed
(i.e., in our pocket, or when our toddler plays with the key fob) outside of the vehicle’s vicinity
(depicted by ”unlock code n+2” and ”n+3” in Fig. 1a). To avoid getting out-of-sync and hence
locking ourselves out of our vehicle in such cases, rolling code-based systems provide a safety
feature that allows the key fob’s counter to be be steps ahead compared to the vehicle’s counter.
This is achieved by having not one but a set of valid “future codes” maintained at the vehicle. If
the received code from the key fob matches any of these future codes, the vehicle resynchronizes
to the code in the last key fob signal, and invalidates all previous (but unused) ones from this set
(refer to ”Unlock code n+4” in Fig. 1a). Clearly, if an attacker could obtain one of these unused
future codes (i.e., capture the signals of the accidental button presses outside of the vicinity of
the car), and she can replay it before the owner uses the key fob again, the attacker can get
access to the vehicle (cf. Fig. 1b). However, obtaining these future codes are extremely difficult
in practice, especially if an attacker wants to target a random victim. That is the reason why
this safety provisioning is considered a handy feature that makes the key fob use seamless and
less troublesome.

In 2015, a sophisticated attack technique called RollJam [16] has proven the rolling code-based
key fob systems to be breakable. In a nutshell, by using a careful sequence of signal jamming,
capturing, and replaying, RollJam can effectively convert this safety provisioning feature into an
exploit.

2 In newer models, a key fob can also be used to turn on and off the anti-theft alarms, or even start and stop
the engine.

2

(a) Essence of rolling codes: every signal is unique
and gets invalidated by the next one.

(b) “Straightforward exploit” of the safety fea-
ture in rolling code-based systems

Fig. 1: Rolling code technology in a nutshell, and its safety feature exploited.

RollJam is based on four main “principles”, (i) capturing unlock signals, (ii) jamming the
frequency band towards the vehicle at the same time to hinder correct signal reception, (iii)
the owner’s second trial as a fail-over mechanism, and most importantly, (iv) timely replay of
previously captured signals. To this end, a special-purpose device (hereafter, rolljam device) is
used as a man-in-the-middle proxy and a signal jammer between the key fob and the vehicle
(cf. Fig. 2a). Briefly, the victim is lured to (iii) press the unlock button in a key fob twice by (ii)
jamming the first unlock signal. At the same time, both first and second unlock signals are (i)
captured; however, when the second signal is jammed, the rolljam device quickly (iv) replays the
one captured the first time. As a result, the vehicle acts as intended, i.e., unlocks, and the victim
assumes that the signal reception was lousy on the first try. On the other hand, the attacker
(i.e., by the rolljam device) becomes aware of the following valid unlock signal (see more details
in §2.3). Therefore, once the owner stops using the vehicle and leaves it unattended, the attacker
can replay this signal to access the vehicle.

RollJam, however, has two main drawbacks. First, suppose the owner unlocks the vehicle
again without the rolljam device in action. In this case, the rolling code in the RKE system ad-
vances, invalidating all previous codes, including the one possessed by the attacker. Consequently,
properly suffixing the rolljam device at a hidden spot of the vehicle and replaying the valid unlock
signal in a timely manner, i.e., step (iv), are the keys to the success of RollJam. Second, similarly
to the above, if the attacker succeeds in using the captured valid yet unused signal, she cannot
use it again; to repeat unlocking the same vehicle in the future, the whole attack must be redone
from scratch.

In this paper, we present RollBack, a new time-agnostic replay-and-resynchronize attack.
Even though a one-time code becomes invalid in rolling code-based systems, replaying a few
previously captured (consecutive) signals can trigger a rollback-like mechanism in most RKE
systems, making all former captured (unlock) signals valid again; hence the name RollBack3. At

3 Rollback is a process in database management that involves canceling a (set of) transaction(s) to bring the
database to its previous state before those particular transactions would have been performed.

3

:Object:Object:Object:Object

Drive / Use

RollJam DeviceOwner

"Unlock 1" (ii) Jamming
(i) Capture
"Unlock 1"

(iii) "Unlock 2" (ii) Jamming
(i) Capture
"Unlock 2"

(iv) Replay "Unlock 1"

Locked

Vehicle

Locked

Unlocked

Unlocked

Locked
"Lock"

Attacker

Interact/Trigger

(iv) Replay "Unlock 2"
Unlocked Access

No further
"Unlocks" can

take place

(a) RollJam is particularly sensitive to timing; it has
to be aware of the next valid unused code.

Drive / Use
"Lock"

"Lock"

:Object:Object:Object:Object

Drive / Use

RollBack deviceOwner

"Unlock 1" (ii) Jamming
(i) Capture
"Unlock 1"

(iii) "Unlock 2"
(i) Capture
"Unlock 2"

Locked

Vehicle

Unlocked

Unlocked

Attacker

Interact/Trigger
Replay "Unlock 1"

Locked
Access

"Unlock 2"

Locked
"Unlock n"

Unlocked

Locked

Unlocked
Replay "Unlock 2"

Repeat n
times

different or
no restrictions apply

(b) A RollBack variant using only two captured
signals at any time.

Fig. 2: Differences between RollJam and RollBack.

the same time, the rollback-like mechanism involves the execution of the instruction encoded in
the signals, e.g., unlocking the vehicle.

Consequently, unlike RollJam, RollBack does not have to keep track of the latest valid yet
unused code continuously. In other words, we do not need the long step-sequence (i) → (ii) →
(iii) → (i) → (ii) → (iv) to be repeated, and additionally (iv), every time to eventually access
the vehicle (cf. Fig. 2). In general, RollBack does not need step (iv) at all, and only requires
steps (i) → (ii) → (iii) → (i) once; then, replaying the captured signals can unlock the victim’s
vehicle any time in the future and as many times as desired. This makes RollBack more flexible
and time-agnostic, significantly reducing the complexity and the efforts needed by an attacker.

In fact, even jamming the first signal (ii) is only required by RollBack to obtain the signals
in a relatively short time frame. Put differently, due to the time-agnostic feature of RollBack, it
does not matter whether the captured signals are received by the vehicle (see details in §3).

During our analysis4, we found that not all vulnerable vehicles and RKE systems are equally
susceptible to RollBack. Therefore, we derive four different variants of RollBack w.r.t. a small
set of properties (e.g., number of previously captured signals, sequence of the signals, time frame
and pace of replay) required for the successful replay attack. We found that vehicles and RKE
systems being the most vulnerable to RollBack can be unlocked with only two signals captured
any time in the past. Moreover, these two signals do not even have to be strictly consecutive
(see explicit definitions later), i.e., the victim can still use the key fob between the times the
attacker manages to capture those two signals. This makes RollBack particularly alarming as, in
addition to the aforementioned appealing properties, it further minimizes the required efforts of
the attacker.

Last but not least, to make RollBack even more dangerous, we will show that RollBack is
instruction-agnostic. This means that it does not matter whether the captured signals belong to
lock or unlock instructions, making the capturing process even more simpler (see more details
in §5.2). Only the last captured and replayed signal has to contain the desired instruction, i.e.,

4 Our analysis is still ongoing, and, at the time of writing, we have already tested around ∼20 different vehicle
makes, models, and RKE systems.

4

unlock to get access to the car.
Similar to RollJam and other RKE attacks, permanent mitigation might be cumbersome

if RKE ECU firmware cannot be upgraded over-the-air, requiring calling back whole fleets of
vehicles to the factory or dealerships. Some precautionary measures can be applied against signal
jamming-based attacks, like RollJam, by assuring proper signal reception by being close to the
vehicle, pressing the lock button for the second try if the first unlock signal is not received. In
certain scenarios, e.g., car-sharing use cases, risks can be minimized by disabling RKE system
until the vehicle is unlocked through the car-sharing app (see details in §8). Nevertheless, since
RollBack, in essence, is a passive listener in the signal capturing phase without the need of signal
jamming, none of the previously-mentioned approaches are applicable to RollBack.

Our main contributions are summarized below:

• After revisiting keyless entry systems and RollJam in more details (cf. §2), we propose
RollBack (cf. §3) that, in contrast to RollJam, can unlock a vehicle indefinitely at any time
in the future and as many times as desired by merely replaying previously captured (unlock)
signals being already invalid. Hence, RollBack is more effective.

• We delineate a (hidden) property of today’s RKE systems that mimics the modus operandi
of RollBack, hence being the most relevant candidate to be the root cause of the vulner-
ability (cf. §7.2). However, for the time being, we could not ascertain whether our attack
exploits an implementation bug or a limitation inherited from the design of the key fob
re-synchronization or learning feature.

• Through a currently limited yet ongoing real-world experiment, we scrutinize the effective-
ness of RollBack on a variety of popular vehicles5, and show that most of them use RKE
implementations that are vulnerable to RollBack (cf. §4).

• We propose four different variants of RollBack based on the requirements, e.g., number of
different signals to capture and replay, the time frame and pace of replay, and the consecu-
tiveness of the signals.

• We also discuss that due to the re-synchronization and instruction-agnostic property of
RollBack and the typical human behavior, astute attackers can rely on capturing lock
signals to either fasten the signal capturing process (without signal jamming) or to cover
the tracks by locking the vehicle again (cf. §5).

• While the root cause of the attack is unknown mostly due to the lack of documentation,
access to resources and knowledge, we delineate a key fob learning process, as a potential
root cause, that mimics the behavior or RollBack.

• Finally, we discuss possible mitigation strategies; some are precautionary measures the
vehicle owner can take when RollBack requires signal jamming, and advises to car-sharing
services that are particularly vulnerable to RollBack (cf. §8). We also discuss possible
practical mitigation, e.g., using timestampsToDo: Rohini’s work?.

2 Background and related work

Next, we briefly discuss the evolution of the keyless entry systems. Then, we present the main
types of attacks that emerged against this fundamental feature of today’s vehicles.

5 We used our and our friends’ and family members’ vehicles with their consent due to responsibility.

5

2.1 The evolution of keys and entry systems

2.1.1 Physical keys

For several decades after the very first car was made in 1886, vehicles had no key at all [18]. The
first key was introduced in 1949 by Chrysler Corporation for ignition and starting the engine [19].
It also acted as a safety precaution to prevent children from accidentally starting and moving the
car if left in gear.

2.1.2 Immobilizer

To deter vehicle theft, Honda has made the first keys enhanced with a so-called immobilizer. The
immobilizer is a passive device that uses RFID technology to communicate with the transponder
near the keyhole and verifies the legitimacy of the key fob before starting the engine. Without
the correct transponder, the keyhole is either mechanically blocked, avoiding illegitimate keys to
turn, or ECUs will not let the fuel flow and start the ignition. Research conducted in Australia
and EU have shown that car thefts have been significantly reduced after making immobilizers
mandatory [20,21].

2.1.3 Remote Keyless Entry (RKE)

RKE is an uni-directional authentication system. In RKE, besides advanced features recently
became available (e.g., start, stop, panic), user unlocks or locks the vehicle by pressing the cor-
responding button on the key fob. When a button is pressed, Radio Frequency (RF) signals are
emitted towards the car in the frequency bands of 315 MHz, 433 MHz, or 868 MHz depending on
the geographic location. The receiver located in the vehicle receives the RF signals (from even up
to hundreds of meters) and carries out the intended action (e.g., lock, unlock).

2.1.4 Passive Keyless Entry System (PKES)

Unlike RKE, the Passive Keyless Entry System (PKES) operates automatically when the user, i.e.,
the key fob, is near the vehicle. Also, PKES uses bi-directional challenge-response communication
for appropriate authentication. PKES allows the owner with the correct key fob to unlock and
automatically lock the car by pulling the door handle and when the owner walks away, respectively.
PKES key fobs are also integrated with RKE, i.e., it still has buttons as a fail-safe/secondary
mechanism or feature for drivers in favor of the “old-fashioned” button-based operation.

While PKES also uses rolling codes, due to the owner’s proximity and the fact that an attacker
does not know when the unlock signals are emitted, they are significantly less vulnerable to typical
replay attacks that affect RKE systems.. However, they are susceptible to relay attacks [22].

In this paper, we focus on the RKE systems exclusively.

2.2 Rolling codes

Next, we briefly discuss the evolution of rolling codes used in RKE systems and define some
notations used later in the document. The history of RKE systems history reaches back to the
1970s [23] where early motorized garage openers used static codes sent in “plain text” over the
air to carry out the intended action (e.g., open, close). However, by merely sniffing and replaying
captured signals, attackers were able to easily unlock garage doors. To overcome this issue,
rolling codes [17] were introduced, and they have been widely used due to its increased protection
(compared to static codes) yet with less computation complexity (compared to the increased

6

protection). The latter property is particularly important as it results in small and simple key
fobs with an average battery life of up to four years [24].

There are a few well-known manufacturers providing rolling code-based RKE systems for
the automotive industry. For instance, Microchip Technology provides Classic, Advanced, and
Ultimate KeeLoq with publicly available documentation and data sheets. On the other hand,
semiconductor companies like NXP [25], Omron, and Texas Instruments also provide proprietary
solutions for vehicle manufacturers. For the technical explanations below, we focus on RKE
systems using the Classic and Advanced KeeLoq technology since their documentations are
publicly available. Note, however, in essence, all rolling code-based technologies are conceptually
similar.

Applying the rolling code technology means that every key fob signal transmission is unique,
i.e., it changes with every individual button press. Uniqueness is achieved by incrementing a
16-bit wide counter 6 in the key fob (and in the vehicle upon reception) with each button press. A
button press is valid if the counters at each side are in sync. Then, each of the parties increments
its counter7 to be in sync for the following button press. Accordingly, if an attacker captures a
valid signal sent from the key fob and received by the vehicle with counter Ck = n and replays it,
it will be discarded by the receiver in the vehicle as its counter Cv > Ck, i.e., Cv = (n+k) : k > 0.

On the other hand, provision is made for cases in which a button is pressed on the key fob
while it is out of range of the vehicle, i.e., when using the key fob to lock/unlock the car and
Ck > Cv. These cases are further divided into two different operation windows [26, 27].

2.2.1 Single window

If Cdiff = Ck−Cv is small8, e.g., Cdiff < 16, counter synchronization takes places immediately at
the first button press without the need of any additional steps. Counter synchronization means
that the receiver unit in the vehicle invalidates all non-received codes before the one present in
the last key fob signal.

2.2.2 Resync/double window

If 16 < Cdiff < 215, the receiver temporarily stores the counter Ck = l and waits for a subsequent
transmission, i.e., the same button has to be pressed once more. If the subsequent transmission
has counter Ck = l + 1, the receiver resynchronizes on the last transmission received. Observe,
the synchronization requires two button presses, and the vehicle acts only upon the reception of
the second one when synchronization finishes.

If any of the above fails9, the key fob signal received by the vehicle is discarded. Note,
furthermore that due to the underlying encryption mechanisms (e.g., in [26]), the change of even
one bit of information (e.g., counter increment) results in significant change in the final transmitted
signal. Hence, it is computationally infeasible for an attacker to infer the next valid, say, unlock
signal by capturing the previous one.

6 Recent advanced implementations, e.g., Ultimate KeeLoq, also maintain timestamps to improve security [26],
however it is not confirmed whether RKE manufacturers already adopted them.

7 For simplicity, here, we suppose an integer increment of 1, however, in the reality the next valid counter is
generated via cryptographic hash functions.

8 Note, different manufacturers use different thresholds.
9 This window is termed as blocked window [27].

7

2.3 Related work: different attacks against RKE systems

In essence, the design of the rolling code scheme should provide a sufficient level of security, how-
ever, the earliest deployments have been proven to be breakable. For instance, Classic KeeLoq

technology primarily used by garage doors only nowadays, was broken by cryptoanalysis [28, 29]
and side-channel attacks on the key derivation scheme used by the receiver [30,31]. Subsequently,
enhanced KeeLoq implementations, i.e., Advanced KeeLoq and Ultimate KeeLoq, have addressed
these issues by using stronger encryption algorithms and longer keys [26].

Another simple yet efficient method criminals use against rolling code-based key fobs is jam-
ming the signals when victims press the lock button to hinder the vehicle from receiving it cor-
rectly. If it happens without the victim’s notice, the car is left unlocked. A more sophisticated
variant of this attack is “selective jamming and replaying”, where besides the previously-mentioned
jamming, the attackers also capture the lock signal. Consequently, if this happens again without
the victim’s notice, the criminals can lock the vehicle after stealing all belongings to make a false
feeling of having the car left adequately locked. Note, once a signal is captured, without additional
knowledge (e.g., encryption keys, command code table), it is impossible to convert it into another
signal, i.e., flipping a lock signal to an unlock is infeasible.

Hitag2 from NXP, another widely used RKE scheme using rolling codes, has been used by
many car manufacturers worldwide (e.g., Renault, Ford, Chevrolet, Lancia, Opel). Recently, re-
searchers have demonstrated a correlation-based attack allowing the recovery of the cryptographic
key and thus cloning the key fob with capturing only four to eight rolling codes [32]. Further-
more, the research also revealed that most VW Group vehicles (e.g., VW, Seat, Audi, Porsche)
manufactured since 1995 rely on a few master keys. By recovering these keys from the ECUs, an
attacker can effortlessly clone the key fob of any such vehicle by only capturing one unlock signal.

In 2015, Samy Kamkar with his RollJam [16] attack has proven all rolling code-based schemes
to be breakable. RollJam does neither rely on any cryptoanalysis nor side-channel attacks; it
converts a safety feature into an exploit. In essence, RollJam is an advanced “selective jamming
and replaying” method; with a careful sequence of jamming, capturing, and replaying signals, it
allows an attacker to capture an unused signal from the key fob that can be replayed later to
unlock the target vehicle without the victim’s notice. As briefly discussed in §1, RollJam is based
on four principles, (i) capturing unlock signals, (ii) jamming the frequency band towards the
vehicle at the same time to force the owner (iii) to retry, and (iv) timely replaying of previously
captured signals.

The operation of RollJam is summarized in Fig. 2a. When the unlock button is pressed on the
key fob, the rolljam device hidden on or near the target vehicle (i) captures the signal and, at the
same time, (ii) jams the frequency band towards the vehicle to hinder correct signal reception.
Since the vehicle does not respond, (iii) the owner presses the same button again assuming a lousy
signal reception. This time, however, the rolljam device repeats not only step (i)-(ii), but also
quickly (iv) replays the previously captured signal towards the vehicle (without jamming). As a
result, the vehicle acts as intended, i.e., unlocks the doors. Besides, the rolljam device becomes
aware of the next valid code for the same action, i.e., it knows what signal to send to unlock the
car again in the future. However, if the owner uses the key fob to unlock the car again without
the rolljam device in action, the signal the attacker possesses will be invalidated forcing her to
redo the whole process. While RollJam, in general, is effective against all rolling code-based RKE
systems, it requires careful and continuous attention due to (iv).

Recently10, an attack called Rolling-PWN [33] saw the light of day and hit the headlines of
several online news sites, e.g., New York Post [34], The Drive [35], Security Affairs [36]. The
authors of Rolling-PWN found that Honda vehicles manufactured between 2012 and 2022, im-

10 Around a month before the Black Hat debut of RollBack, i.e., in the beginning of July 2022.

8

plementing rolling code-based RKE systems, are vulnerable to replay attacks. In particular, the
authors found a somewhat similar behavior to RollBack11; sending the unlock commands in a
consecutive sequence to the Honda vehicles will resynchronize the counter. However, it has not
yet been publicly disseminated, what is the required sequence of codes, exactly how many codes
need to be captured and replayed, or any other relevant (hardware-specific) details.

3 RollBack: a new time-agnostic replay attack

Next, we propose RollBack, a new time-agnostic replay attack, which by exploiting a hidden
property in the RKE systems, overcomes the limitation of Rolljam. In particular, RollBack can
unlock a vehicle by simply capturing and replaying a few, already invalidated unlock signals at
any time in the future and as many times as desired without the need of recapturing any further
signals later on12. In what follows, we describe the threat model of RollBack by using same
setting as shown for RollJam (i.e., by applying signal jamming) to ease the comparison. However,
while jamming can fasten the attack process, unlike RollJam, RollBack does not necessitate signal
jamming at all.

3.1 Threat model and the operation of RollBack

The primary goal of the attack is to unlock a vehicle without the victim’s authorization (and
potentially, its notice). Like in all RKE attacks, the vehicle becomes unlocked the same way as
using the original key fob, leaving the car intact.

In our threat model, the attacker has a device that can capture, jam, and replay signals in the
frequency band used by the target vehicle. For simplicity, let us call this device RollBack-device.
In particular, let S i

I denote a key fob signal sent towards the vehicle with a rolling code counter
i ∈ {1, 2, ..., 215} and an instruction I := {unlock, lock}. For instance, S534

unlock marks an unlock
signal with rolling code counter i = 534. Furthermore, let CaptureA(S i

I) and JamA(S i
I) denote

that an attacker A captures the key fob signal S i
I and jams the frequency band toward the vehicle,

respectively, at the same time, i.e., when S i
I was sent by the victim. Finally, let SendV (S i

I) and
SendA(S i

I) mark when the victim (V) and the attacker (A) send S i
I using the original key fob and

using a special-purpose device intended to replay captured signals, respectively.
The operation of RollBack can be divided into two phases (cf. Fig. 2b).

3.1.1 Reconnaissance phase

The attacker places the RollBack-device near the car that is locked and left in public (e.g.,
in a parking lot). When the victim comes back to his/her car and tries to unlock it via the
key fob, i.e., when the victim runs SendV (S i

unlock), the RollBack-device (i) captures the signal
(CaptureA(S i

unlock)), and (ii) jams the frequency band (JamA(S i
unlock)) to hinder the vehicle from

receiving it correctly. As a result, the victim assumes a lousy reception and (iii) presses the same
unlock button again, i.e., s/he runs SendV (S i+1

unlock). This time, the RollBack-device captures the
second consecutive unlock signal (i.e., it runs CaptureA(S i+1

unlock)), however, unlike RollJam, it also
lets the car receive it, i.e., the attacker does not run (JamA(S i+1

unlock)). Accordingly, the vehicle
unlocks, and the victim drives away, assuming that no harm has been done. Note, since RollBack
does not have to keep track of the next valid unlock signal, it is unnecessary to suffix the RollBack
device to (a hidden spot of) the vehicle. Practically speaking, due to the size of the inexpensive
elements needed (see later in §3.2), such a special-purpose wallet-size [37] RollBack-device can be

11 https://twitter.com/Kevin2600/status/1545593961313472512
12 See RollBack in action at https://www.youtube.com/playlist?list=PLYodcy84oQL1gxwiuRm13xRXxTQL9cO5t

9

https://twitter.com/Kevin2600/status/1545593961313472512
https://www.youtube.com/playlist?list=PLYodcy84oQL1gxwiuRm13xRXxTQL9cO5t

simply thrown below the vehicle. At the end of the reconnaissance phase, the attacker becomes
aware of two consecutive correct unlock signals. Recall, by the rolling code design, both captured
signals are not valid anymore.

3.1.2 Exploitation phase

Unlike RollJam, this phase does not have to follow the first phase directly. In other words, the
victim can continue to lock, unlock, and use her/his car as usual as many times s/he wants
(cf. Fig. 2b). Nevertheless, at any given latter time, once the vehicle is locked, the attacker can
unlock the vehicle (without the victim’s authorization) by replaying the previously captured two

consecutive unlock signals, i.e, by running SendA(S(i)
unlock) and SendA(S(i+1)

unlock).
For brevity, our threat model does not cover further intentions of the attacker after unlocking

the vehicle. The attacker might steal belongings left inside the car, or use other attack methods
(if necessary) to steal the vehicle itself.

3.2 Essential hardware

For our comprehensive analysis, we use Software Defined Radio (SDR) devices. In essence, these
devices have wireless receivers (and transmitters) that can be fine-tuned via software, for in-
stance, in which frequency domain they should listen to signals. One of the most well-known
and commodity-of-the-shelf (COTS) devices is HackRF One [38], which is capable of both trans-
mitting and receiving signals, and costs ∼300− 400 USD at the time of writing. The COTS
software, called gqrx can be used to easily identify the exact frequency used by the key fob to
transmit the signals. On the other hand, since all key fobs operate in the licensed spectrum, they
all (must) have a unique registered identifier with Federal Communications Commission (FCC).
Therefore, one can lookup the publicly available details of a key fob by keying in its FCC ID at
https://fccid.io/. Once the correct frequency is identified, the other COTS software, called
Universal Radio Hacker (URH, [39]13), can be used to control SDR devices, i.e., to practically
capture and replay (the unlock) signals. To jam the frequency using the SDR device, an attacker
has a large variety of options, and it is completely up to her appetite and knowledge. For in-
stance, she might use inexpensive programmable development boards and radio transmitters, such
as Arduino-based deployments, or even a Raspberry Pi with a full-fledged operating system and
RTL-SDR dongles [40] for reception and/or CC1101 transceivers for jamming [41]. Note that,
essentially, RollBack relies on the exact hardware requirements as RollJam. Moreover, since jam-
ming is not necessarily needed (cf. §3) for the success of RollBack, a RollBack-device has even
less requirements. Therefore, it would cost no more than a couple of tens of US dollars [42].

3.3 Different variants of RollBack

When we first discovered the vulnerability, we have tested a pretty outdated vehicle, a Nissan
Latio from 2009 (see details in §4.1). In this case, RollBack had the following properties.

Naturally, first, we identified how many signals do we need to replay. In case of the Nissan
Latio, this number turned out to be only two; however, as we will show, other vulnerable systems
might require more than that. Accordingly, the first (and most important) property of RollBack
is the number of signals (i.e., #SIGNALS) an attacker has to capture (and replay).

The second observation we had is that the attacker strictly has to run CaptureA(S i
unlock) and

CaptureA(S i+1
unlock) and replay them in the same sequence. Put differently, capturing and replaying,

13 There are several other publicly available free and/or open-source software, e.g., GNURadio, OpenSDR, that
can be used for the same purpose.

10

https://fccid.io/

Variant #SIGNALS SEQUENCE TIMEFRAME

RollBackLoose⊗ (2) 2 Loose
⊗

RollBackStrictN (2) 2 Strict N sec
RollBackStrict⊗ (3) 3 Strict

⊗
RollBackStrict⊗ (5) 5 Strict

⊗
Tab. 1: Different variants of RollBack derived from our analysis. Each variant encodes all prop-

erties as RollBackSEQUENCETIMEFRAME(#SIGNALS).

for instance, S i
unlock and S i+k

unlock : k > 1 does not trigger the expected rollback-like mechanism.
Hence, we call the second property SEQUENCE and it can be Strict (like in case of the Nissan Latio
mentioned before), or Loose if it is not required, i.e., when replaying signals in the capturing (i.e.,
ascending) order is sufficient but there could be further valid and forfeited signals in between.

Furthermore, in the case of the Nissan Latio, we observed that the two consecutive unlock
signals have to be replayed within five seconds ; otherwise, the RollBack is unsuccessful. We
termed the third property TIMEFRAME and it indicates the maximum number of seconds that can
elapse between two signals when replayed. We indicate TIMEFRAME as

⊗
when there is no limit on

the maximum number of seconds. When TIMEFRAME ̸=
⊗

, we confirmed the value of TIMEFRAME,
by carefully trimming gaps between the captured signals to exactly N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
seconds. Then, we saved the signals, replayed them and observed whether RollBack succeeds.
Note, once the signals are captured, TIMEFRAME can be easily adjusted via the SDR software by
cutting or copy-pasting the breaks/noises between the signals.

During our analysis (detailed later in §4), we derived four different versions of RollBack

regarding the properties mentioned above. The different combinations are summarized in Table 1.

4 Evaluation

Next, we evaluate RollBack and discuss which vehicles are vulnerable.

Disclaimer

For our experiments, we did not carry out any attempts with RollBack in the wild. All tests were
executed in an isolated environment, where no other vehicles and/or key fobs were in close vicinity.
All of the captured signals (for the tests) had been stored temporarily only; after capturing the
signals and replaying them, the data had been removed permanently immediately. We have stored
two key fob signals for a longer period, i.e., ∼ 100 days to validate RollBack’s time-agnostic
feature. Afterward, those stored signals were also removed permanently. Note, furthermore,
replaying key fob signals do not cause any harm to the vehicle, the key fob, and the whole
electronic ecosystem irrespectively of being vulnerable to RollBack. Thus, the tested vehicles
continue to work and behave as usual.

This paper is the first publicly disseminated, detailed written information about our findings
and about RollBack in general. We used its shorter and more condensed preliminary versions of
this document during our attempts in initiating disclosure processes with RKE chip manufacturers
and AUTO-ISAC members. See more details about the disclosure processes and findings in §7.1.

11

4.1 Vehicles Evaluated

As mentioned in §4, we could examine a limited number of vehicles. In particular, for the time
being, we could examine several popular Asian vehicle makes and models available in Singapore.
The vehicles examined and their relevant data are detailed in Table 2. Model date means the time
frame the actual model was in production, while the Mfg. date denotes the actual manufacturing
date of the vehicle we tested. Such information were obtained by using the vehicles’ identifier,
i.e., their VIN numbers, and publicly available services14.

Car Make Model Model date Mfg. date RKE manufacturer RollBack (variant)

Honda

Fit (hybrid) 2016-2018 2016 NXP F2951X RollBackStrict⊗ (5)

Fit 2018 2018 NXP 61X0915 RollBackStrict⊗ (5)

City 2017 2017 NXP F2951X RollBackStrict⊗ (5)

Vezel 2016-2022 2017 NXP F2951X RollBackStrict⊗ (5)

Hyundai
Elantra 2013-2015 2015 Omron MD-015 RollBackLoose⊗ (2)

Elantra 2012 2012 NXP 32182C15 NO
Avante 2018-2020 2020 NXP F793616 NO

Kia
Cerato/Forte K3 2016-2018 2017 Omron MD-011 RollBackLoose⊗ (2)

Cerato/Forte K3 2012-2018 2015 Omron MD-011 RollBackLoose⊗ (2)

Mazda

3 2018 2018 NXP A2V25 RollBackStrict⊗ (3)

2 Sedan 2018 2018 NXP F7953 RollBackStrict⊗ (3)

2 HB (facelift) 2020 2020 NXP A2V25 RollBackStrict⊗ (3)

Cx-3 2019 2019 NXP A2V25 RollBackStrict⊗ (3)

Cx-5 2018 2018 NXP F7953 RollBackStrict⊗ (3)

Nissan
Teana 2014 2014 NXP 063168C NO
Latio 2007-2012 2009 Microchip RollBackStrict5 (2)
Sylphy 2012-2019 NXP F7952 RollBackStrict8 (2)

Toyota

Wish 2009-2017 NO
Corolla Axio 2015-2017 TI 37143ADN NO

Altis 2005 TI 37200A NO
Prius (hybrid) 2020 2020 TI NO

Tab. 2: Vehicles’ details used for our in-house experiments. For the vehicles where the release
date and manufacturing date are the same, only the manufacturing date was available by
using the vehicle’s identifier (VIN). For the Toyota vehicles, the VIN numbers were not
available, hence we left those cells intentionally blank. Moreover, for some vehicles, we
could also not identify the RKE system manufacturer; hence, corresponding cell was also
left intentionally blank.

Different vehicles and their key fobs use different frequencies, however, since the used frequency
did not have an impact on whether the vehicle is vulnerable to RollBack, we omit the exact
frequency bands. Furthermore, we could also obtain the exact RKE manufacturer and chip
version and serial number most of the times by manually disassembling the key fobs17. When
disassembling the key fob was either infeasible or the the chip(s) on the PCB were obscured
(e.g., via black paint), we tried to gather manufacturer information by keying in its FCC ID at
https://fccid.io/ or looking for spare key fobs on different retailers’ sites. The found chips are

14 One can rely on https://vindecoderz.com to check all publicly available basic servicing information about a
vehicle by using its VIN number

15 Inferred from https://bit.ly/3POlZaz.
16 Inferred from https://bit.ly/3OrwbEV.
17 In some cases, the key fob’s printed circuit board had an extra plastic cover, which could not be removed

without making permanent damage.

12

https://fccid.io/
https://vindecoderz.com
https://bit.ly/3POlZaz
https://bit.ly/3OrwbEV

detailed in the penultimate column of Table 2. If we could not obtain the RKE manufacturer by
any of the above-mentioned ways, we left the corresponding cells in Table 2 intentionally blank.

Finally, the last column indicates whether the vehicle, or more precisely, the RKE system is
vulnerable to RollBack (indicated by the actual RollBack variant that works).

From our experiment (cf. Table 2), which we continuously update18, we can conclude the
following. First, more than ∼ 70% of the examined vehicles found vulnerable to a RollBack

variant. Furthermore, the vulnerability is not specific to any sole vehicle, car make, or model.
While the age (i.e., model and manufacturing date) does not seem to be a deciding factor,

the used RKE system’s manufacturers might be a telltale sign. In particular, RKE systems from
Omron found in most Korean vehicles (e.g., Kia, Hyundai) are the most vulnerable requiring only
two unlock signals that could even be captured independently in the past (i.e., SEQUENCE=Loose).
On the other hand, by having an RKE system from NXP does not necessarily indicate whether
our vehicle is vulnerable (to any RollBack variant) as some of the evaluated vehicles with NXP
transponders in their key fobs turned out to be safe. Furthermore, we observe that all three tested
Toyota vehicles turn out to be immune to RollBack. From an RKE manufacturer aspect, even
though the case of Toyota Wish where we could not identify the RKE system used, we observe
that the RKE systems of the Toyota vehicles rely on Texas Instruments transponder chips in their
key fobs and, as mentioned above, none of them is susceptible to RollBack at all. Last but not
least, Microchip RKE systems were probably more ubiquitous in the past, however, their rolling
code-based solution can still be found in today’s vehicles and they might all be vulnerable to
RollBack.

Note, however, that not the key fob (as it only sends the signals) but its counter-part (i.e.,
the receiving unit in the car per se) seems to be vulnerable. Moreover, the key fob manufacturer
usually produces key fobs (i.e., the transponders) only, and the receiving units are produced by
different OEMs. Yet, our results indicate a strong relationship between the key fob manufacturer
and the receiving unit as we have not found any two RKE systems that use the same transponder
chip in their key fobs but react differently to RollBack.

5 Further appealing features of RollBack

This section discusses how easily attackers might hide their tracks after accessing a vehicle, and
shows that RollBack, in certain cases, can be successfully launched with even less effort, i.e.,
without the need for signal jamming.

5.1 Re-locking the vehicle after access

Recall that due to the counter re-synchronization, if subsequent signals are captured and re-
played, they also work as expected straight away afterward. Using the notations defined in
§3.1, assume the attacker not only captures consecutive unlock signals (e.g., CaptureA(S i

unlock),
CaptureA(S i+1

unlock) in case of RollBackLoose⊗ (2)), but also captures a following lock signal S i+2
lock

(i.e., CaptureA(S i+2
lock)). In this case, irrespectively of whether the victim continues to use the

key fob as normal (i.e., whether the last signal received by the car is S i+2
lock or S i+j

(un)lock : j > 2),

after SendA(S i
unlock) and SendA(S i+1

unlock) (in case of RollBackLoose⊗ (2)), the vehicle unlocks and

also resynchronizes to the counter (i + 1). Accordingly, after the attacker accessed the vehicle,
when running SendA(S i+2

lock), the car will lock, making a false feeling for the owner of having the
vehicle left adequately locked.

18 Please see an online crowdsourced version of this table here: https://docs.google.com/spreadsheets/d/1cj5jK
7 Ibb7q6H9yvGbxAg8rQMZm4M2wgL0GyLUxHE/edit?usp=sharing

13

https://docs.google.com/spreadsheets/d/1cj5jK_7_Ibb7q6H9yvGbxAg8rQMZm4M2wgL0GyLUxHE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1cj5jK_7_Ibb7q6H9yvGbxAg8rQMZm4M2wgL0GyLUxHE/edit?usp=sharing

5.2 RollBack is instruction-agnostic

To achieve the re-synchronization via RollBack, the instructions embedded in the signals do not
matter. For instance, in case of RollBackLoose⊗ (2), capturing and replaying one lock signal and then
an unlock signal is sufficient to unlock the target vehicle. Suppose now that the attacker captures
the lock signals emitted when the victim left the vehicle in a parking lot (i.e., CaptureA(S i

lock)).
Then, the attacker wait for the victim to come back and unlock the vehicle; this time the attacker
runs CaptureA(S i+1

unlock). Recall, in case of RollBackLoose⊗ (2), the second signal does not even have

to be strictly consecutive, i.e., the attacker can simply capture any following unlock signal (e.g.,
CaptureA(S i+k

unlock : k > 1)) to unlock the vehicle. After replaying these two signals in sequence,
the vehicle will be locked and resynchronized to the counter (i + 1), and the vehicle will react
according the instruction in the last signal, i.e., it unlocks.

This makes RollBack particularly alarming as this signal sequence can be easily captured
at once without applying any signal jammer. Moreover, even if the vehicle is susceptible to a
RollBack-variant that requires more signals, they can be also be captured without jamming due
to the following typical human behavior and the vehicles’ safety features. For instance, when we
leave something worthy unattended (e.g., the vehicle in the parking lot, the main entry door to
our home), we usually confirm whether locking was done adequately. For this reason, most of us
still push (down the handle on) the door of our home after locking to double-check whether the
lock itself is not malfunctioning. Similarly, it is always worth pressing the lock button on the key
fob once more when we leave our vehicle behind since it confirms adequate locking by flashing
the emergency signals and/or honking.

Pressing the lock button again (for third or even more time) afterward thereby making the
vehicle honk can also become handy afterward. People tend to use this feature in huge parking
lots to locate the vehicle per se.

On the other hand, vehicles usually implement a safety feature when unlocking the car via
the key fob. This feature allows the owner to only unlock the driver’s door upon pressing the
unlock button for the first time. However, if one does not driving alone, giving access to the other
co-riders (e.g., family members), we have to press the unlock button twice to unlock all doors.

These features and usual human factors enable all RollBack-variants to be successfully launched
without the need of any signal jammer.

6 Car-sharing Services: The Most Attractive Targets of RollBack

Car sharing has recently been viral, especially in countries where the cost of ownership for a vehicle
is extremely high compared to the average. Car sharing, in essence, makes classic car renting much
more accessible, more convenient, and much cheaper too. Instead of renting a vehicle for at least
a day, doing a lot of paperwork in-person, get lost among the different insurance policies and
waivers, car-sharing costs are significantly lower due to the non-necessity of staff, an hour or
minute-based conditions, and the convenience of using a mobile application to access and lock the
vehicle in the beginning and at the end of the rental, respectively.

The typical steps of car-sharing are as follows. Users (already registered for the service) can
use the mobile app to book a car (for a certain period). Once the booking timeslot starts, the
user can unlock the vehicle by instructing the mobile application to do so. In the background,
the car-sharing company’s service remotely unlocks the vehicle utilizing additional ECUs added
to the car for this specific reason. Once the vehicle unlocks, the user will find the original key fob
at a hidden spot in the car (usually in the glove compartment), then s/he can start driving. Note,
typically, there are further different steps the car-sharing company might require (e.g., photo-
taking, damage and petrol level checking); however, from our attacking point of view, they are

14

not relevant. After the user returns the vehicle to a designated parking lot, s/he has to put back
the key fob to the hidden spot it was found in the beginning. To finish the renting, the user has
to get out of the vehicle, close all doors, carry out any aforementioned additional steps required
by the car-sharing company, and use the application to lock the vehicle19.

An attacker can easily use the key fob to capture the required number of unlocking signals
during the renting phase. Since the attacker temporarily owns the vehicle, she might even carry
out further tests (e.g., checking which RollBack-variant works and how many signals are required
accordingly). Once she returns the vehicle, the rental process officially ends, and during that
period, the attacker took care of the vehicle well, and no harm was done. Later, other users will
use the car. An attacker, most of the time, does not even need any effort (e.g., physically following
the car, installing a GPS tracker) to keep track of the vehicle. The car-sharing service gives all
the necessary information to the attacker. In particular, in point-A-to-A car-sharing, where each
vehicle has a single dedicated lot it has to be returned to to finish its rental, the given vehicle’s
status and booking schedules are usually available upfront. In the case of point-A-to-B car-sharing,
i.e., where vehicles can be picked up and returned to different places, individual booking schedules
might not be available. However, information required for a seamless booking experience (e.g.,
license plate numbers of nearby vehicles, only showing currently available vehicles) is available
through the application. This means that attackers can easily implement crawling scripts to
obtain the necessary location information about the target vehicle.

Utilizing such information, the attacker can significantly reduce suspiciousness by waiting for
the vehicle to be booked (and used) by several other users. Once there is a time-slot when the
vehicle is available, the attacker can launch RollBack to access and steal the vehicle (since the
key fob is inside the car). Note, since car-sharing companies usually install GPS trackers to keep
track of their fleet, stealing the vehicle might be less appealing. Yet, using the same availability
information, the attacker can check when a particular vehicle will be booked in the future. Then,
she can approach the vehicle before the scheduled booking starts, wait for the victim to rent the
vehicle, and follow him/her until the vehicle is temporarily left, i.e., when it is locked but not
returned, for instance, during shopping. The attacker can then use RollBack to unlock the vehicle
and steal the belongings left behind.

While one can quickly come up with countless different ways how and when to exploit RollBack
and what an attacker might do afterward, due to the simplicity and the little effort needed,
RollBack is particularly alarming for car-sharing (and classic car-renting) companies as attackers
can do much harm to the rental companies’ user bases; eventually to their reputation.

7 Responsible disclosure process to identify the root cause

In this section, we describe our responsible disclosure process, particularly, how we started, what
obstacles we bumped into, and eventually, what take-aways we received. The steps we describe
are not necessarily the recommended steps to take in such situation. Due to the limited time
frame we were given, we made the following steps, and we share below our experience that could
potentially help us (and others) in future responsible disclosure processes.

19 Some advanced car sharing companies have already gone completely keyless, i.e., there is no key in the vehicle
at all, and even temporarily locking the vehicle in a parking lot (without returning the car) is done through the
mobile app.

15

7.1 Responsible disclosure process(es)

Step 1: Who should we contact and who responded?

While this question seems to be the easiest, it was not in our case due to one main reason:
we could only carry out our experiments in a limited yet diverse set of vehicles. Accordingly,
after finding one car make and model vulnerable, should we contact the car manufacturer, e.g.,
Hyundai, straight away? They would probably ask first: which specific vehicles are vulnerable?
Are they the newest models, or older ones? Is there any other model from the same make that
was found vulnerable? Are all Hyundai vehicles vulnerable? We would have not been able to
answer (m)any of these questions due to our limited experiment.

Therefore, we kept experimenting with different vehicles we could have access to until we
reached a certain point when 2-3 RKE systems using different key fob transponder chips from the
same key fob vendor were found vulnerable, irrespective to the vehicle itself.

This led us to two key fob manufacturers, namely NXP and Omron (cf. Table 2). While
Omron did not have a specific website for reporting vulnerabilities, we have tried to reach out
to them through their contact forms found on their international 20 and local21 (i.e., Singapore)
sites. However, we did not receive any response.

NXP, on the other hand, takes vulnerability disclosure processes very seriously. Vulnerabilities
can be reported to their PSIRT (Product Security Incident Response Team) for which all necessary
information is provided on their website22.

Step 2: First meeting with NXP

We have scheduled a virtual session with NXP in March 2022. By definition, before that, many
legal processes had to be done, including Non-Disclosure Agreement (NDA) between the com-
panies. While the content of our disclosure process is protected by NDA, we share below the
conclusions we could draw. The vulnerability we found is indeed a vulnerability and there is no
such feature that exactly works the same way as RollBack. However, the vulnerability is in the
receiver side of the RKE system, which manages the rolling codes, and verifies the validity of each
code received; the key fob only sends the signals expected by the vehicle.

On the other hand, it is somewhat known that vendors producing key fobs only produce the
transponders, and car manufacturers obtain the receiving parts from other OEMs. Accordingly,
it is very likely that vehicles using key fobs from other vendors might have the same type of
vulnerability due to supply chain for the receiving units.

Step 3: Meeting with Auto-ISAC members

The key fob manufacturers are (likely) not responsible for the receiving unit, which seems to be
the component vulnerable to RollBack. However, for us, researchers, it is particularly difficult to
reach out to those manufacturers as we do not even know who they are. The reason why we could
end up with NXP is that we could disassemble the key fob, where the chip manufacturer can
be identified. However, we neither had the appropriate knowledge nor the approval from the car
owners to tear down the vehicle, identify the corresponding ECU, disassemble it, and get to know
the manufacturer by reading any of the chips on the PCB. Luckily, we were able to get engaged
with the Automotive Information Sharing and Analysis Center (Auto-ISAC23). Auto-ISAC is a

20 https://bit.ly/3yXGElG
21 https://bit.ly/3ooVr42
22 https://bit.ly/3BeMLF1
23 Their website can be found at https://automotiveisac.com/.

16

https://bit.ly/3yXGElG
https://bit.ly/3ooVr42
https://automotiveisac.com/

US-based industry-driven community, which shares and analyzes intelligence about emerging cy-
bersecurity risks to the vehicle, and collectively enhances vehicle cybersecurity capabilities across
the global automotive industry. They are partnered with several car and OEM manufacturers,
and thanks to Ricky Brooks, Auto-ISAC members could set up a virtual meeting with us (in
May 2022) where many (10+) representatives from the industry were present. Although, we did
not have time and/or intention to sign an NDA with each manufacturer, otherwise our sharing
session would have still not been scheduled. Consequently, the Auto-ISAC members could only
agree to join the session, listen to our findings, but they were not allowed to get engaged more
with us. This means, that besides general questions they could ask, we could not advance towards
identifying the root cause of the vulnerability and any possible mitigation.

Step 4: Take-aways from the disclosure process

We ended up having two main take-aways from the disclosure process. First, the members ac-
knowledged the vulnerability as well as our intention to present our findings (with or without
limitations on the context) at Black Hat USA 2022. Second, from the nature of some more
generic questions and reactions, we could draw a conclusion. Note, this conclusion is utterly our
opinion on the subject and it does not reflect any statements from any car manufacturers. Since
our attack targets one specific vehicle (not a fleet of vehicles in general) and has to redone from
scratch for other vehicles (even from the same make/model), it might not be particularly alarming
for the car manufacturers. Roughly speaking, there is not much difference between breaking the
windows/lock-picking the doors of the target vehicle to steal belongings, and doing a more so-
phisticated and unnoticeable attack like RollBack to achieve the same. Both approaches always
need to pick the target, find the right timing, and carry out the attack. Furthermore, RollBack
on its own does not allow an attacker to steal the vehicle itself.

We found that to the vulnerability revealed recently (Rolling-PWN [33]), the reaction of
Honda [43] has somewhat underpins our above-mentioned conclusions drawn.

7.2 Towards Finding the Root Cause

According to the normal operation (discussed in §2.2.1 and §2.2.2), since the counter value Ck of
the key fob signals replayed by RollBack is smaller than Cv, they should be discarded. Thus,
when we first discovered this vulnerability, we immediately thought that the phenomenon belongs
to some sort of key fob re-synchronization, which is required when a new transmitter (i.e., a key
fob) is learned to the receiver (i.e., the vehicle’s RKE system) or when the battery is replaced
in the key fob and it might lose its last counter values24. However, currently, we cannot confirm
the root cause of this vulnerability for several reasons. First, datasheets with explanation on
how the system architecture works (including the described learning process) is only available
for Microchip offerings [26, 27]. Therefore, we discuss the key fob learning process in Microchip
KeeLoq systems in detail, and also point out the critical steps that are not (completely) in line
with the operation of RollBack.

In the KeeLoq system [27], the typical learning process is as follows (cf. Fig. 3). After
entering into the learning mode, when a button on the new key fob is pressed, the first signal is
sent to the vehicle. The signal has an unencrypted part containing the key fob’s serial number and
an encrypted part containing the rest of the data, e.g., rolling code counter, discrimination bits,
button pressed25. Using the master key added during manufacturing, the receiver in the vehicle

24 Note, one can easily find a third-party tutorial (video) on how to learn a new key fob to a certain vehicle make
and model, however, these tutorials neither reveal which manufacturer’s RKE system they configure nor why the
learning process works in that way.

25 For more details about the basic packet formats, refer to [27].

17

Fig. 3: Typical learning sequence in KeeLoq HCS200 / HCS300 RKE systems [27].

18

generates the correct encryption/decryption key26 for the key fob using its serial number emitted
unencrypted in the first signal. Then, after decrypting the packet using the freshly generated key,
the receiver authenticates the signal. Briefly, authentication involves validating the correct key
use via the discrimination bits and buffering the counter value Ck = n. Afterward, the receiver
waits for the second signal, i.e., for the second button press on the key fob. When the second
signal is received (and authenticated), the receiver checks whether the transmission is indeed
the second one, i.e., whether the second counter Ck = n + 1. The receiver stores the key fob’s
serial number, current synchronization counter, and appropriate decryption key upon successful
completion of this process. Finally, the system exits from the learning mode. After this point,
whenever the freshly added key fob is used in the future, this decryption key is retrieved from the
memory along with the stored synchronization counter.

Clearly, the operation of the above-mentioned learning process mimics the operation of RollBack.
However, there are five key observations we have to consider as they are not elaborated sufficiently
and they might undermine such a claim accordingly.

7.2.1 Learn mode

Observe that the learning sequence starts with a step Enter Learn Mode. Depending on the
make, model, and build-year, different vehicles implement different yet intricate approaches to
put the receiver in the car into learn mode. In other words, to avoid accidentally entering into
learn mode, the vehicle (i.e., the RKE system) requires very uncommon sequence of actions that
would not be carried out during normal use. For instance, some Toyota vehicles require the key
to be turned in the ignition from OFF to ON and repeat within five seconds [44]27. However,
RollBack does not require entering into this mode explicitly.

On the other hand, upon a successful learning process, the system should exit from this mode
by default (cf. Exit step in Fig. 3). This means that the vehicles found vulnerable to RollBack

(see details in §4) are either always in a learn mode (i.e., do not exit) or do not have this initial
step at all, i.e., synchronizing a new key fob to the vehicle is over-simplified.

7.2.2 Timeframe

As discussed in §3.3, some RKE implementations require the captured signals to be replayed
within a certain time frame (e.g., RollBackStrictN (2)), while others have no such requirement.
This property is not defined in the available documentation, e.g., in [26, 27]. However, even [27]
claims that the method describes a typical implementation, real-world deployments might be
altered to fit other needs.

7.2.3 Number of signals and their sequence

While the learning process require the key fob to be pressed two times in a sequence, several
RollBack-variants we derived work differently. For instance, RollBackLoose⊗ (2) does not requires

strictly consecutive signals, while other variants, e.g., RollBackStrict⊗ (5), need more than two
signals. Recall that the learning process described in Fig. 3 applies to Microchip’s solutions;
however, the previously mentioned RollBack-variants work against other RKE manufacturers
(see details in §4).

26 The KeeLoq algorithm uses a symmetrical block cipher; hence the encryption and decryption keys are iden-
tical.

27 One can easily find several tutorial videos online on how to learn a new key fob to a vehicle.

19

7.2.4 Vehicle’s reaction

Another missing piece from the puzzle is to describe which (i) actual button (and its instructed
action) should be pressed, and (ii) whether the same button has to be pressed for the second
time. However, since only the key fob’s serial number and the discrimination bits matter during
the learning process, pressing two different buttons and sending two different signals (i)-(ii)
accordingly should have no impact on the learning process. Put differently, sending a lock signal
and an unlock signal should be sufficient to learn a new key fob to the vehicle.

Nevertheless, at the end of the learning process (cf. Learn Successful in Fig. 3), there is no
indication of whether the vehicle should react to the second button press with the intended action
(e.g., lock the doors if lock button was pressed). However, in the case of RollBack, the intended
action in the last signal (e.g., unlock) is always materialized.

7.2.5 Re-learning the same old key fob

We can observe that there is no information available about what happens if an already learned
key fob (e.g., the original key fob) is being re-added to the system. One of the vital steps in the
learning process is to save the serial number of the key fob and the accompanying crypt key in
memory. Thus, the vehicle can have this information straight away from memory in the future,
when the the new key fob is used. During the learning process, however, there is no step involved
in checking whether the serial number of the key fob is already known (before adding it to the
memory). Due to this missing check and §7.2.4, it is unclear whether re-adding an already known
key fob is silently ignored (i.e., leaving the system still in learning mode waiting for a new key
fob to be added) or re-added as new.

7.2.6 Out-of-sync counters

Finally, observe that during the learning process, the counters of the key fob are buffered for the
first signal and only stored upon success. However, the counter’s value Ck is not checked (against
the counter at the vehicle Cv. This, on the other hand, is somewhat expected; normally, a new key
fob cannot be in sync with the vehicle, hence the learning process. Furthermore, synchronizing
the new key fob’s counters to the counters of the actual key fob we use everyday would make no
sense at all either. The different key fobs are always going to be out of sync due to using one
of them at a time; hence, the vehicle’s receiver stores a separate synchronization counter for all
key fobs learned. This can be the case why consecutive but out-of-sync old counters are always
accepted without further validations.

While the learning process is the only action we identified in the RKE system that somewhat
mimics the operation of RollBack, according to our arguments above, we cannot state with
confidence whether RollBack indeed exploits this feature. Nevertheless, if the found exploit is in
the learning process, then the vulnerable vehicles are probably unintentionally left in a “forever”
learn mode (§7.2.1), which allows re-adding an already learned key fob (§7.2.5) by simply replaying
old consecutive signals (§7.2.6), and the vehicle will react accordingly (§7.2.4).

8 Mitigation

To identify and propose proper mitigation strategies or patches, the root cause of the vulnerability
must be identified first. However, as mentioned in §7.2, for the time being, we were not able to
pin-point the root cause with confidence. Accordingly, in this section, we devise different types
of mitigation strategies; general advises for an owner to be vigilant and avoid being targeted of

20

RKE attacks mostly relying on jamming (e.g., RollJam), for the case of astute attackers (cf. §5),
and the car-sharing/renting scenarios.

8.1 General advices

Since RollBack, just like other replay-based attack techniques (e.g., RollJam [16]), can utilize
jamming to speed up the whole process, a user can be vigilant to realize a possible exposure to
signal jamming. The most important thing is always to be close enough to the vehicle to avoid
lousy signal reception. Thus, if the first button press was not realized by the vehicle (but the
second was28), then there is a high chance of the first signal being jammed (and captured). In
such circumstances, the owner may press the lock and unlock buttons interchangeably until (i)
both two last button presses were correctly received, and (ii) the vehicle acts as intended. If only
(i) holds, the owner might still be exposed to continuous attacks such as RollJam, which jams the
latest signal and replays a previously captured one. However, with (ii), the owner can definitely
rule out the possibility of such attacks taking place.

Additionally, advanced rolling code implementations having precise timestamps besides the
counters (e.g., in Ultimate KeeLoq [26]) avoid any practical replay attacks because of the time
difference between the vehicle and the key fob’s signal.

Note, RollBack does not require jamming at all. Accordingly, since in essence it works as a
passive listener during the reconnaissance phase (§3.1.1, there is no way to realize whether one is
a victim of RollBack.

8.2 The problem of instruction-agnosticism

While having one rolling code per each learned key fob simplifies the design and reduces the
resource requirements, implementing different rolling codes for each instruction will easily evade
the problem discussed in §5. In particular, by replaying lock signals and hence re-synchronizing
its counters, only the further yet invalid lock signals would work. On the other hand, the rolling
codes of the unlock instructions would remain intact, still preventing the replay of a single unlock
signal to open the vehicle (after re-synchronizing the lock instruction’s counter). This would
significantly reduce the easiness of RollBack, requiring signal jamming in almost all cases. As
mentioned above (cf. §8.1), once signal jamming is taking place, a vigilant user can identify it.

8.3 Car-sharing Scenarios

Car-sharing companies require additional ECUs to enable their users to unlock and lock their
vehicles using the mobile application. There are several options to implement such behavior
(e.g., using internet and API calls, mobile SMS); however, most of the time, that function works
independently of the other ECUs in the vehicle. This means that even if the vehicle is locked
through this ECU (i.e., via the mobile app), the original RKE system can still be used to unlock
the vehicle, hence it is still vulnerable to RollBack. Therefore, for car-sharing companies, it
would be worth “connecting” this additional mobile app-related ECU to the rest of the system
and enabling the RKE system only if the vehicle is unlocked through the app (and disabling
otherwise). However, this only protects the vehicle after it is returned. When someone, who is
renting the vehicle, leaves it temporary in a parking lot adequately locked via the key fob but the
rental is still ongoing, RollBack can still be launched.

28 This can also justify that the battery has sufficient charge in the key fob.

21

9 Conclusion

Remote Keyless Entry (RKE) systems have been the target of attackers for a long time. Attacks
such as jamming, tampering, and replaying captured key fob signals, have been quite common.
Thus, since the late 1990s, deployments have implemented rolling code technology that, by inval-
idating all previous codes every time a button is pressed on the key fob, renders the attackers’
job much more difficult. However, in 2015, RollJam was proven to break, in general, all rolling
code-based systems. By carefully jamming, capturing, and replaying key fob signals, RollJam can
always be one step ahead of the original key fob, letting an attacker unlock any vehicle. However,
if the owner uses the key fob without the RollJam device being in operation (which requires care-
ful placement to hidden spots on the vehicle, continuous control, etc.), the next (unlock) code the
attacker possesses becomes invalidated thanks to the rolling codes.

Here, we developed RollBack, a new time-agnostic replay-and-resynchronize attack against
today’s most RKE systems. We showed that even though the one-time code becomes invalid
in rolling code systems, replaying a few previously captured signals consecutively can trigger a
rollback-like mechanism in the RKE system. RollBack is instruction-agnostic, meaning that any
captured signals (irrespective of belonging to an unlock or lock instruction) can trigger the same
behavior. Therefore, in a typical use case, RollBack does not require signal jamming at all.
Furthermore, it is time-agnostic; signals have to be captured only once and can be replayed any
time in the future as many times as desired.

We derived four different variants of RollBack w.r.t. the required number of signals to be
captured, sequence, and time frame of the replay. Our limited yet ongoing analysis revealed
that ∼ 70% of the vehicles are vulnerable to a variant of RollBack. While most of the vehicles
found vulnerable until this point are from Asian manufacturers, the impact is likely to be bigger
worldwide.

As a countermeasure, we proposed several general advises for the vehicle owners on how they
possibly avoid all types of signal jamming-based RKE attacks in different scenarios, including car-
sharing use cases that are the most attractive targets to RollBack. However, since RollBack does
not necessitate jamming and the root cause of the vulnerability is yet to be identified, adequate
countermeasures and patches could not be proposed for the time being.

Acknowledgements

This research was supported by the National University of Singapore, NCS Group, and I2R, A*STAR,
Singapore. The authors would like to thank Xu Jia for his comments.

References

[1] A. Paul, R. Chauhan, R. Srivastava, and M. Baruah, “Advanced Driver Assistance Systems,” SAE
Technical Paper 2016-28-0223, https://bit.ly/3aJUEUz, Feb 2016 [Accessed: Jul 2022].

[2] Bosch, “Electronic Power Steering (EPS),” Online, https://bit.ly/2ZJNI7k, [Accessed: Jul 2022].

[3] CSS Electronics, “OBD2 Explained - A Simple Intro (2021),” Online, https://bit.ly/3pZeyn6, [Ac-
cessed: Jul 2022].

[4] J. Wang, Y. Shao, Y. Ge, and R. Yu, “A survey of vehicle to everything (v2x) testing,” Sensors,
vol. 19, no. 2, 2019. [Online]. Available: https://bit.ly/3vOtw0b

[5] M. Lake, “HOW IT WORKS; Remote Keyless Entry: Staying a Step Ahead of Car Thieves,” New
York Time post, https://nyti.ms/3DLnSyS, Jun 2001 [Accessed: Jul 2022].

22

https://bit.ly/3aJUEUz
https://bit.ly/2ZJNI7k
https://bit.ly/3pZeyn6
https://bit.ly/3vOtw0b
https://nyti.ms/3DLnSyS

[6] Embitel, “Electronic Control Unit is at the Core of All Automotive Innovations: Know How the
Story Unfolded,” Blog post, https://bit.ly/3DNRCei, Jul 2017 [Accessed: Jul 2022].

[7] A. Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me in It,” WIRED article,
https://bit.ly/3AJLhjn, 2015 [Accessed: Jul 2022].

[8] Jmaxxz, “You Car is My Car,” Presentation at DEFCON 27, https://bit.ly/3peIzPu, Aug 2019.

[9] “FREE-FALL: HACKING TESLA FROM WIRELESS TO CAN BUS,” Presentation at BlackHat,
https://bit.ly/3FZyRGx, 2017.

[10] D. F. Oswald, “Wireless attacks on automotive remote keyless entry systems,” in Proceedings
of the 6th International Workshop on Trustworthy Embedded Devices, ser. TrustED ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 43–44. [Online]. Available:
https://bit.ly/3pzxRmN

[11] K. Karnik, Manandeep, S. Kale, and A. Medhekar, “On vehicular security for rke and cryptographic
algorithms: A survey,” International Journal of Engineering Research and, vol. 9, 2020.

[12] R. Verdult, F. D. Garcia, and J. Balasch, “Gone in 360 seconds: Hijacking with hitag2,” in 21st
USENIX Security Symposium (USENIX Security 12). Bellevue, WA: USENIX Association, Aug.
2012, pp. 237–252. [Online]. Available: https://bit.ly/3maFaPO

[13] R. Verdult, F. D. Garcia, and B. Ege, “Dismantling megamos crypto: Wirelessly lockpicking a
vehicle immobilizer,” in 24th USENIX Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, Aug. 2015. [Online]. Available: https://bit.ly/3m6Elrb

[14] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. Manzuri, “Physical crypt-
analysis of keeloq code hopping applications.” IACR Cryptology ePrint Archive, vol. 2008, p. 58, 01
2008.

[15] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock it and still lose it —on the
(in)security of automotive remote keyless entry systems,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016. [Online]. Available:
https://bit.ly/3pwZKvV

[16] S. Kamkar, “Drive It Like You Hacked It: New Attacks and Tools to Wirelessly Steal Cars,”
Presentation at DEFCON 23, https://bit.ly/3j0NZKc, Aug 2015.

[17] K. Marneweck, “An introduction to KeeLoq™ code hopping,” Microchip App Notes, https://bit.
ly/3BVV5qs, 1996 [Accessed: Jul 2022].

[18] “The history of car technology,” https://bit.ly/3lFTHCK, accessed: 2021-08-06.

[19] L. Herbert, “90 firsts in american automotive history,” in Popular Science. Bonnier Corporation,
1964, pp. 81–83. [Online]. Available: https://bit.ly/3BIxee4

[20] R. Potter and P. Thomas, “Engine immobilisers: How effective are they?” https://bit.ly/3aC75l4,
2001, accessed: 2021-08-10.

[21] J. C. van Ours and B. Vollaard, “The engine immobiliser: A non-starter for car
thieves,” The Economic Journal, vol. 126, no. 593, pp. 1264–1291, 2016. [Online]. Available:
https://bit.ly/3pw0MIB

[22] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive keyless entry and start systems
in modern cars.” IACR Cryptology ePrint Archive, vol. 2010, p. 332, 01 2010.

[23] B. Santo, “The Consumer Electronics Hall of Fame: LiftMaster Garage Door Opener,” IEEE Spec-
trum, https://bit.ly/3BJ2Z6t, Oct 2019 [Accessed: Jul 2022].

23

https://bit.ly/3DNRCei
https://bit.ly/3AJLhjn
https://bit.ly/3peIzPu
https://bit.ly/3FZyRGx
https://bit.ly/3pzxRmN
https://bit.ly/3maFaPO
https://bit.ly/3m6Elrb
https://bit.ly/3pwZKvV
https://bit.ly/3j0NZKc
https://bit.ly/3BVV5qs
https://bit.ly/3BVV5qs
https://bit.ly/3lFTHCK
https://bit.ly/3BIxee4
https://bit.ly/3aC75l4
https://bit.ly/3pw0MIB
https://bit.ly/3BJ2Z6t

[24] YourMechanic, “How Long Does a Key Fob Battery Last?” AutoBlog post, https://bit.ly/2T4oSw2,
2016 [Accessed: Jul 2022].

[25] NXP, “Advancing keyless entry/go,” NXP solutions brochure, https://bit.ly/3LGJyjB, 2013 [Ac-
cessed: Jul 2022].

[26] C. Toma, “Introduction to Ultimate KeeLoq™ Technology,” Microchip App Notes, https://bit.
ly/3jjz79W, 2014 [Accessed: Jul 2022].

[27] Microchip, “KeeLoq™ Code Hopping Encoder,” Microchip HCS200, https://bit.ly/3GqCl5c,
2011 [Accessed: Jul 2022].

[28] A. Bogdanov, “Attacks on the keeloq block cipher and authentication systems,” in In RFIDSec,
2007.

[29] W. Aerts, E. Biham, D. De Moitié, E. De Mulder, O. Dunkelman, S. Indesteege, N. Keller,
B. Preneel, G. A. E. Vandenbosch, and I. Verbauwhede, “A practical attack on keeloq,” J.
Cryptol., vol. 25, no. 1, p. 136–157, Jan. 2012. [Online]. Available: https://bit.ly/2Zj91Nv

[30] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M. Shalmani, “On the
power of power analysis in the real world: A complete break of the keeloqcode hopping scheme,”
in Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008, ser. Lecture Notes in Computer Science, vol. 5157.
Springer, 2008, pp. 203–220. [Online]. Available: https://bit.ly/3jyIHG0

[31] M. Kasper, T. Kasper, A. Moradi, and C. Paar, “Breaking keeloq in a flash: On extracting keys
at lightning speed,” in Proceedings of the 2nd International Conference on Cryptology in Africa:
Progress in Cryptology, ser. AFRICACRYPT ’09. Berlin, Heidelberg: Springer-Verlag, 2009, p.
403–420. [Online]. Available: https://bit.ly/3Bec4Dg

[32] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock it and still lose it —on the
(in)security of automotive remote keyless entry systems,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016. [Online]. Available:
https://bit.ly/3b4tU18

[33] Kevin2600 and W. Li, “Rolling Pwn Attack,” [Online], https://bit.ly/3czwTCw, July 2022 [Ac-
cessed: Jul 2022].

[34] T. Barrabi, “Honda key fob hack could leave all vehicle models since 2012 vulnerable: reports,”
New York Post [Online], https://bit.ly/3b4364x, July 2022 [Accessed: Jul 2022].

[35] R. Stumpf, “I Tried the Honda Key Fob Hack on My Own Car. It Totally Worked,” security affairs
[Online], https://bit.ly/3Os6dRt, July 2022 [Accessed: Jul 2022].

[36] P. Paganini, “Experts demonstrate how to unlock several Honda models via Rolling-PWN attack,”
security affairs [Online], https://bit.ly/3RVusdZ, July 2022 [Accessed: Jul 2022].

[37] D. Goodin, “Meet RollJam, the $30 device that jimmies car and garage doors,” Blog post, https:
//bit.ly/2YKvmD8, 2015 [Accessed: Jul 2022].

[38] S. Gadgets, “HackRF One,” Online, https://bit.ly/3DCNmy6, [Accessed: Jul 2022].

[39] J. Pohl and A. Noack, “Universal radio hacker: A suite for analyzing and attacking stateful wireless
protocols,” in 12th USENIX Workshop on Offensive Technologies (WOOT 18). Baltimore, MD:
USENIX Association, 2018. [Online]. Available: https://bit.ly/3p56MYG

[40] RTL-SDR.com, “Quick Start Guide,” Online, https://bit.ly/3vJu1Zk, [Accessed: Jul 2022].

24

https://bit.ly/2T4oSw2
https://bit.ly/3LGJyjB
https://bit.ly/3jjz79W
https://bit.ly/3jjz79W
https://bit.ly/3GqCl5c
https://bit.ly/2Zj91Nv
https://bit.ly/3jyIHG0
https://bit.ly/3Bec4Dg
https://bit.ly/3b4tU18
https://bit.ly/3czwTCw
https://bit.ly/3b4364x
https://bit.ly/3Os6dRt
https://bit.ly/3RVusdZ
https://bit.ly/2YKvmD8
https://bit.ly/2YKvmD8
https://bit.ly/3DCNmy6
https://bit.ly/3p56MYG
https://bit.ly/3vJu1Zk

[41] Texas Instruments, “CC1101 - Low-Power Sub-1 GHz RF Transceiver,” Datasheet, https://bit.ly/
3H7dYK7, 2021 [Accessed: Jul 2022].

[42] A. Greenberg, “This Hacker’s Tiny Device Unlocks Cars And Opens Garages,” WIRED article,
https://bit.ly/3EedD6d, June 2015 [Accessed: Jul 2022].

[43] B. Toulas, “Hackers can unlock Honda cars remotely in Rolling-PWN attacks,” BleepingComputer
News, https://bit.ly/3otJ8U4, Jul 2022 [Accessed: Jul 2022].

[44] Oak Lawn Toyota, “How to Program a Toyota Key Fob,” Online, https://bit.ly/3mxmnhH, [Ac-
cessed: Jul 2022].

25

https://bit.ly/3H7dYK7
https://bit.ly/3H7dYK7
https://bit.ly/3EedD6d
https://bit.ly/3otJ8U4
https://bit.ly/3mxmnhH

	Introduction
	Background and related work
	The evolution of keys and entry systems
	Physical keys
	Immobilizer
	Remote Keyless Entry (RKE)
	Passive Keyless Entry System (PKES)

	Rolling codes
	Single window
	Resync/double window

	Related work: different attacks against RKE systems

	RollBack: a new time-agnostic replay attack
	Threat model and the operation of RollBack
	Reconnaissance phase
	Exploitation phase

	Essential hardware
	Different variants of RollBack

	Evaluation
	Vehicles Evaluated

	Further appealing features of RollBack
	Re-locking the vehicle after access
	RollBack is instruction-agnostic

	Car-sharing Services: The Most Attractive Targets of RollBack
	Responsible disclosure process to identify the root cause
	Responsible disclosure process(es)
	Towards Finding the Root Cause
	Learn mode
	Timeframe
	Number of signals and their sequence
	Vehicle's reaction
	Re-learning the same old key fob
	Out-of-sync counters

	Mitigation
	General advices
	The problem of instruction-agnosticism
	Car-sharing Scenarios

	Conclusion

